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IMMEDIATE COMMUNICATION

Towards understanding and predicting suicidality in women:
biomarkers and clinical risk assessment
DF Levey1,2,8, EM Niculescu1,8, H Le-Niculescu1, HL Dainton1, PL Phalen3, TB Ladd1,2, H Weber3, E Belanger3, DL Graham3, FN Khan1,
NP Vanipenta1, EC Stage1,2, A Ballew4, M Yard5, T Gelbart6, A Shekhar1, NJ Schork7, SM Kurian6, GE Sandusky5, DR Salomon6 and
AB Niculescu1,2,3

Women are under-represented in research on suicidality to date. Although women have a lower rate of suicide completion than
men, due in part to the less-violent methods used, they have a higher rate of suicide attempts. Our group has previously identified
genomic (blood gene expression biomarkers) and clinical information (apps) predictors for suicidality in men. We now describe pilot
studies in women. We used a powerful within-participant discovery approach to identify genes that change in expression between
no suicidal ideation (no SI) and high suicidal ideation (high SI) states (n= 12 participants out of a cohort of 51 women psychiatric
participants followed longitudinally, with diagnoses of bipolar disorder, depression, schizoaffective disorder and schizophrenia). We
then used a Convergent Functional Genomics (CFG) approach to prioritize the candidate biomarkers identified in the discovery step
by using all the prior evidence in the field. Next, we validated for suicidal behavior the top-ranked biomarkers for SI, in a
demographically matched cohort of women suicide completers from the coroner’s office (n= 6), by assessing which markers were
stepwise changed from no SI to high SI to suicide completers. We then tested the 50 biomarkers that survived Bonferroni correction
in the validation step, as well as top increased and decreased biomarkers from the discovery and prioritization steps, in a
completely independent test cohort of women psychiatric disorder participants for prediction of SI (n= 33) and in a future follow-up
cohort of psychiatric disorder participants for prediction of psychiatric hospitalizations due to suicidality (n= 24). Additionally, we
examined how two clinical instruments in the form of apps, Convergent Functional Information for Suicidality (CFI-S) and Simplified
Affective State Scale (SASS), previously tested in men, perform in women. The top CFI-S item distinguishing high SI from no SI states
was the chronic stress of social isolation. We then showed how the clinical information apps combined with the 50 validated
biomarkers into a broad predictor (UP-Suicide), our apriori primary end point, predicts suicidality in women. UP-Suicide had a
receiver-operating characteristic (ROC) area under the curve (AUC) of 82% for predicting SI and an AUC of 78% for predicting future
hospitalizations for suicidality. Some of the individual components of the UP-Suicide showed even better results. SASS had an AUC
of 81% for predicting SI, CFI-S had an AUC of 84% and the combination of the two apps had an AUC of 87%. The top biomarker
from our sequential discovery, prioritization and validation steps, BCL2, predicted future hospitalizations due to suicidality with an
AUC of 89%, and the panel of 50 validated biomarkers (BioM-50) predicted future hospitalizations due to suicidality with an AUC of
94%. The best overall single blood biomarker for predictions was PIK3C3 with an AUC of 65% for SI and an AUC of 90% for future
hospitalizations. Finally, we sought to understand the biology of the biomarkers. BCL2 and GSK3B, the top CFG scoring validated
biomarkers, as well as PIK3C3, have anti-apoptotic and neurotrophic effects, are decreased in expression in suicidality and are
known targets of the anti-suicidal mood stabilizer drug lithium, which increases their expression and/or activity. Circadian clock
genes were overrepresented among the top markers. Notably, PER1, increased in expression in suicidality, had an AUC of 84% for
predicting future hospitalizations, and CSNK1A1, decreased in expression, had an AUC of 96% for predicting future hospitalizations.
Circadian clock abnormalities are related to mood disorder, and sleep abnormalities have been implicated in suicide.
Docosahexaenoic acid signaling was one of the top biological pathways overrepresented in validated biomarkers, which is of
interest given the potential therapeutic and prophylactic benefits of omega-3 fatty acids. Some of the top biomarkers from the
current work in women showed co-directionality of change in expression with our previous work in men, whereas others had
changes in opposite directions, underlying the issue of biological context and differences in suicidality between the two genders.
With this study, we begin to shed much needed light in the area of female suicidality, identify useful objective predictors and help
understand gender commonalities and differences. During the conduct of the study, one participant committed suicide. In
retrospect, when the analyses were completed, her UP-Suicide risk prediction score was at the 100 percentile of all participants
tested.

Molecular Psychiatry advance online publication, 5 April 2016; doi:10.1038/mp.2016.31

1Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; 2Stark Neuroscience Research Institute, Indiana University School of Medicine,
Indianapolis, IN, USA; 3Indianapolis Veterans' Affairs Medical Center, Indianapolis, IN, USA; 4Marion County Coroner’s Office, Indianapolis, IN, USA; 5Indiana Center for Biomarker
Research in Neuropsychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; 6Department of Molecular and Experimental Medicine, The Scripps Research Institute,
La Jolla, CA, USA and 7J. Craig Venter Institute, La Jolla, CA, USA. Correspondence: Professor AB Niculescu, Psychiatry and Medical Neuroscience, Indiana University School of
Medicine, Indianapolis Veterans' Affairs Medical Center, Indiana Center for Biomarker Research in Neuropsychiatry and Laboratory of Neurophenomics, Neuroscience Research
Building 200B, 320W. 15th Street, Indianapolis, IN 46202, USA.
E-mail: anicules@iupui.edu
8These authors contributed equally to this work.
Received 22 November 2015; revised 27 January 2016; accepted 11 February 2016

Molecular Psychiatry (2016), 1–18
© 2016 Macmillan Publishers Limited All rights reserved 1359-4184/16

www.nature.com/mp

http://dx.doi.org/10.1038/mp.2016.31
mailto:anicules@iupui.edu
http://www.nature.com/mp


INTRODUCTION
‘Is there no way out of the mind?’
-Sylvia Plath

Predicting suicidality (suicidal ideation (SI), suicide attempts and
suicide completion) in individuals is a difficult task, which is even
more challenging in an understudied population like women.
Although women have a lower rate of suicide completion than
men, due in part to the less-violent methods used, they have a
higher rate of suicide attempts.1 It is reasonable to assume that
genetic and biological differences may exist in suicidality between
men and women. Studies by gender are a first step toward
individualized medicine. We have previously shown in men with
psychiatric disorders how blood biomarkers for suicide, alone or in
combination with quantitative phenomic data for anxiety and mood,
the Simplified Affective State Scale (SASS), and with a risk profile
scale we have developed, Convergent Functional Information for
Suicide (CFI-S), collected in the form of apps, could have predictive
ability for SI, and for future hospitalizations for suicidality.2 We now
present data for discovery, prioritization, validation and testing of
blood biomarkers for suicidality in women, across psychiatric
diagnoses. We also show the utility of SASS and CFI-S in predicting
suicidality in women. Both these type of tools, biomarkers and
phenomic data apps, do not directly ask about SI. We demonstrate
how our apriori primary end point, a comprehensive universal
predictor for suicide (UP-Suicide), composed of the combination of
50 top Bonferroni validated biomarkers, along with SASS, and CFI-S,
predicts in independent test cohorts SI and future psychiatric
hospitalizations for suicidality. Finally, we uncover biological path-
ways involved in suicide in women, and potential therapeutics.

MATERIALS AND METHODS
Human participants
We derived our data from four cohorts: one live psychiatric
participants discovery cohort; one postmortem coroner’s office
validation cohort; and two live psychiatric participants test cohorts
—one for predicting SI and one for predicting future hospitaliza-
tions for suicidality (Figure 1).
The live psychiatric participants are part of a larger longitudinal

cohort that we are continuously collecting. Participants are
recruited from the patient population at the Indianapolis Veterans'
Affairs (VA) Medical Center and Indiana University School of
Medicine through referrals from care providers, the use of
brochures left in plain sight in public places and mental health
clinics and through word of mouth. All participants understood
and signed informed consent forms detailing the research goals,
procedure, caveats and safeguards, per institutional review board-
approved protocol. Participants completed diagnostic assess-
ments by an extensive structured clinical interview—Diagnostic
Interview for Genetic Studies—at a baseline visit, followed by up
to six testing visits, 3–6 months apart or whenever a new
psychiatric hospitalization occurred. At each testing visit, they
received a series of psychiatric rating scales, including the
Hamilton Rating Scale for Depression-17, which includes a SI
rating item (Figure 2a), and the blood was drawn. Whole blood
(10 ml) was collected in two RNA-stabilizing PAXgene tubes,
labeled with an anonymized ID number, and stored at − 80 °C in a
locked freezer until the time of future processing. Whole-blood
(predominantly lymphocyte) RNA was extracted for microarray
gene expression studies from the PAXgene tubes, as detailed
below. We focused this study on a female population. We have
recently described a similar study in males,2 and data from that
study are used for gender comparison purposes in this paper.
Our within-participant discovery cohort, from which the

biomarker data were derived, consisted of 12 female participants
with psychiatric disorders and multiple visits in our laboratory,

who each had at least one diametric change in SI scores from no SI
to high SI from one testing visit to another. There were 7
participants with 3 visits each, and 5 participants with 2 visits each,
resulting in a total of 31 blood samples for subsequent microarray
studies (Figure 2 and Supplementary Table S1).
Our postmortem cohort, in which the top biomarker findings

were validated for behavior, consisted of a demographically
matched cohort of six female violent suicide completers obtained
through the Marion County coroner’s office (Table 1 and
Supplementary Table S1). We required a last observed alive
postmortem interval of 24 h or less, and the cases selected had
completed suicide by means other than overdose, which could
affect gene expression. Five participants completed suicide by
gunshot to head or chest, and one by asphyxiation. Next of kin
signed informed consent at the coroner’s office for donation of
blood for research. The samples were collected as part of our
INBRAIN initiative (Indiana Center for Biomarker Research in
Neuropsychiatry).
Our independent test cohort for predicting SI (Table 1)

consisted of 33 female participants with psychiatric disorders,
demographically matched with the discovery cohort, with one or
multiple testing visits in our laboratory, with either no SI,
intermediate SI or high SI, resulting in a total of 74 blood samples
in whom whole-genome blood gene expression data were
obtained (Table 1 and Supplementary Table S1).
Our test cohort for predicting future hospitalizations (Table 1

and Supplementary Table S1) consisted of 24 female participants
in whom whole-genome blood gene expression data were
obtained by us at testing visits over the years as part of our
longitudinal study. If the participants had multiple testing visits,
then the visit with the highest marker (or combination of markers)
levels was selected for the analyses (so-called ‘high watermark’ or
index visit). The participants’ subsequent number of psychiatric
hospitalizations, with or without suicidality (ideation or attempt),
was tabulated from electronic medical records. Participants were
evaluated for the presence of future hospitalizations for suicidality,
and for the frequency of such hospitalizations. A hospitalization
was deemed to be without suicidality if suicidality was not listed
as a reason for admission, and no SI was described in the
admission and discharge medical notes. Conversely, a hospitaliza-
tion was deemed to be because of suicidality if suicidal acts or

Figure 1. Cohorts used in study depicting, flow of discovery,
prioritization, validation and testing of biomarkers from each step.
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intent was listed as a reason for admission, and/or SI was
described in the admission and discharge medical notes.

Medications
The participants in the discovery cohort were all diagnosed with
various psychiatric disorders (Table 1). Their psychiatric medica-
tions were listed in their electronic medical records, and docu-
mented by us at the time of each testing visit. The participants
were on a variety of different psychiatric medications: mood
stabilizers, antidepressants, antipsychotics, benzodiazepines and
others (data not shown). Medications can have a strong influence
on gene expression. However, our discovery of differentially
expressed genes was based on within-participant analyses, which
factor out not only genetic background effects but also
medication effects, as the participants had no major medication
changes between visits. Moreover, there was no consistent
pattern in any particular type of medication, or between any
change in medications and SI, in the rare instances where there
were changes in medications between visits.

Human blood gene expression experiments and analyses
RNA extraction. Whole blood (2.5–5 ml) was collected into each
PaxGene tube by routine venipuncture. PaxGene tubes contain
proprietary reagents for the stabilization of RNA. RNA was
extracted and processed as previously described.3

Microarrays. Microarray work was carried out using previously
described methodology.4

Analysis. We have used the participant’s SI scores at the time of
blood collection (0—no SI compared with 2 and above—high SI).
We looked at gene expression differences between the no SI and
the high SI visits, using a within-participant design, then an across-
participants summation (Figure 2).

Gene expression analyses in the discovery cohort
We analyzed the data in two ways: an Absent-Present (AP)
approach, and a differential expression (DE) approach, as in pre-
vious work by us on suicide biomarkers.2,3 The AP approach may
capture turning on and off of genes, and the DE approach
may capture gradual changes in expression. For the AP approach,
we used Affymetrix Microarray Suite Version 5.0 (MAS5) to
generate Absent (A), Marginal (M) or Present (P) calls for each
probeset on the chip (Affymetrix U133 Plus 2.0 GeneChips) for all
participants in the discovery cohort (Affymetrix, Santa Clara, CA,
USA). For the DE approach, we imported all Affymetrix microarray
data as .cel files into Partek Genomic Suites 6.6 software package
(Partek, St Louis, MO, USA). Using only the perfect match values,
we ran a robust multi-array analysis (RMA), background corrected
with quantile normalization and a median polish probeset
summarization, to obtain the normalized expression levels of all
probesets for each chip. RMA was performed independently for
each of the four diagnoses used in the study, to avoid potential
artifacts due to different ranges of gene expression in different
diagnoses.5 Then, the participants normalized data were extracted
from these RMAs and assembled for the different cohorts used in
the study.

A/P analysis. For the longitudinal within-participant AP analysis,
comparisons were made within-participant between sequential
visits to identify changes in gene expression from Absent to
Present that track changes in phene expression (SI) from no SI to
high SI. For a comparison, if there was a change from A to P
tracking a change from no SI to high SI, or a change from P to
A tracking a change from high SI to no SI, that was given a score of
+1 (increased biomarker in High SI). If the change was in opposite

direction in the gene vs the phene (SI), that was given a score
of − 1 (decreased biomarker in High SI). If there was no change in
gene expression between visits despite a change of phene
expression (SI), or a change in gene expression between visits
despite no change in phene expression (SI), that was given a score
of 0 (not tracking as a biomarker). If there was no change in gene
expression and no change in SI between visits, that was given a
score of +1 if there was concordance (P-P with High SI-High SI or
A-A with No SI-No SI), or a score of − 1 if there was the opposite
(A-A with High SI-High SI or P-P with No SI-No SI). If the changes
were to M (moderate) instead of P, then the values used were 0.5
or –0.5. These values were then summed up across the comparisons
in each participant, resulting in an overall score for each gene/
probeset in each participant. We also used a perfection bonus. If the
gene expression perfectly tracked the SI in a participant that had at
least two comparisons (three visits), that probeset was rewarded by
a doubling of its overall score. Additionally, we used a non-tracking
correction. If there was no change in gene expression in any of the
comparisons for a particular participant, that overall score for that
probeset in that participant was zero.

DE analysis. For the longitudinal within-participant DE analysis,
fold changes (FC) in gene expression were calculated between
sequential visits within each participant. Scoring methodology
was similar to that used above for AP. Probesets that had a
FC⩾ 1.2 were scored +1 (increased in high SI) or − 1 (decreased in
high SI). FC⩾ 1.1 were scored +0.5 or − 0.5. FC lower than 1.1 were
considered no change. The only difference between the DE and
the AP analyses was when scoring comparisons where there was
no phene expression (SI) change between visits and no change in
gene expression between visits (FC lower than 1.1). In that case,
the comparison received the same score as the nearest preceding
comparison where there was a change in SI from visit to visit. If no
preceding comparison with a change in SI was available, then it
was given the same score as the nearest subsequent comparison
where there was a change in SI. For DE also, we used a perfection
bonus and a non-tracking correction. If the gene expression
perfectly tracked the SI in a participant that had at least two
comparisons (3 visits), that probeset was rewarded by a doubling
of its score. If there was no change in gene expression in any of
the comparisons for a particular participant, that overall score for
that probeset in that participant was zero.

Internal score. Once scores within each participant were calcu-
lated, an algebraic sum across all participants was obtained, for each
probeset. Probesets were then given internal points based upon
these algebraic sum scores. Probesets with scores above the 33.3%
of the maximum score (for increased probesets and decreased
probesets) received 1 point, those above 50% received 2 points and
those above 80% received 4 points. For AP analyses, we have 30
probesets which received 4 points, 647 probesets with 2 points and
2596 probesets with 1 point, for a total of 3273 probesets. For DE
analyses, we have 95 probesets which received 4 points, 2215
probesets with 2 points and 7520 probesets with 1 point, for a total
of 9829 probesets. The overlap between the two discovery methods
for probesets with an internal score of 1 is shown in Figure 2d.
Different probesets may be found by the two methods due to
differences in scope (DE capturing genes that are present in both
visits of a comparison, that is, PP, but are changed in expression),
thresholds (what makes the 33.3% change cutoff across participants
varies between methods), and technical detection levels (what is
considered in the noise range varies between the methods).
Gene names for the probesets were identified using NetAffyx

(Affymetrix) for Affymetrix HG-U133 Plus 2.0 GeneChips, followed
by GeneCards to confirm the primary gene symbol. In addition, for
those probesets that were not assigned a gene name by NetAffyx,
we used the UCSC Genome Browser to directly map them to
known genes, with the following limitations: (1) in case the
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probeset fell in an intron, that particular gene was assumed to be
implicated; (2) only one gene was assigned to each probeset.
Genes were then scored using our manually curated Convergent
Functional Genomics (CFG) databases as described below (Figure 2).

Convergent functional genomics
Databases. We have established in our laboratory (Laboratory of
Neurophenomics, Indiana University School of Medicine, www.
neurophenomics.info) manually curated databases of all the
human gene expression (postmortem brain, blood and cell
cultures), human genetics (association, copy number variations
and linkage), and animal model gene expression and genetic
studies published to date on psychiatric disorders. Only the
findings deemed significant in the primary publication, by the
study authors, using their particular experimental design and
thresholds, are included in our databases. Our databases include
only primary literature data and do not include review papers or

other secondary data integration analyses to avoid redundancy
and circularity. These large and constantly updated databases
have been used in our CFG cross-validation and prioritization
(Figure 2). For this study, data from 442 papers on suicide were
present in the databases at the time of the CFG analyses (genetic
studies—164, brain studies—192, peripheral fluids—86).

Human postmortem brain gene expression evidence. Converging
evidence was scored for a gene if there were published reports of
human postmortem data showing changes in expression of that
gene or changes in protein levels in brains from participants who
died from suicide.

Human blood and other peripheral tissue gene expression data.
Converging evidence was scored for a gene if there were
published reports of human blood, lymphoblastoid cell lines,
cerebrospinal fluid or other peripheral tissue data showing
changes in expression of that gene or changes in protein levels

Figure 2. Biomarker discovery, prioritization and validation. Discovery cohort: longitudinal within-participant analysis. Phchp### is study ID for
each participant. V# denotes visit number (1, 2 or 3). (a) Suicidal ideation (SI) scoring. (b) Participants and visits. (c) PhenoChipping: two-way
unsupervised hierarchical clustering of all participant visits in the discovery cohort vs 18 quantitative phenotypes measuring affective state
and suicidality. SASS, Simplified Affective State Scale. A—Anxiety items (Anxiety, Uncertainty, Fear, Anger, Average). M—Mood items (Mood,
Motivation, Movement, Thinking, Self-esteem, Interest, Appetite, Average). STAI-STATE is State Trait Anxiety Inventory, State Subscale. YMRS is
Young Mania Rating Scale. (d) Discovery—number of probesets carried forward from the Absent-Present (AP) and differential expression (DE)
analyses, with an internal score of 1 and above. Red—increased in expression in high SI and blue—decreased in expression in high SI;
(e) Prioritization—CFG integration of multiple lines of evidence to prioritize suicide—relevant genes from the discovery step.
(f) Validation—Top CFG genes, with a total score of 4 and above, validated in the cohort of suicide completers. All the genes shown were
significantly changed and survived Bonferroni correction in ANOVA from no SI to high SI to suicide completers.
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in participants who had a history of suicidality or who died from
suicide.

Human genetic evidence (association and linkage). To designate
convergence for a particular gene, the gene had to have

independent published evidence of association or linkage for
suicide. For linkage, the location of each gene was obtained
through GeneCards (http://www.genecards.org), and the sex
averaged cM location of the start of the gene was then obtained
through http://compgen.rutgers.edu/mapinterpolator. For linkage

Table 1. Cohorts used in study

Participants Diagnosis Ethnicity Age mean (s.d.) T-test for age

Discovery cohort (within-participant
changes in suicidal ideation)

12 BP= 4
MDD= 4
SZA= 3
SZ= 1

EA= 9
AA= 2
Asian= 1

All= 44.39 (11.65)
No SI= 44.56
High SI= 44.15

T-test for age
between no SI and
high SI 0.926

Independent validation cohort for
gene expression (suicide completers)

6 BP= 1
MDD= 3
PTSD= 1
Non-
psychiatric= 1

EA= 5
AA= 1

43.5 (14.24) T-test for age
with discovery
cohort P = 0.890

Independent testing cohort for state
predictions (suicidal ideation)

33 All
BP= 17
MDD= 7
SZA= 7
SZ= 2
No SI
BP= 13
MDD= 4
SZA= 6
SZ= 2
Intermediate SI
BP= 3
SZA= 1
High SI
BP= 3
MDD= 3
SZA= 1

EA= 26
AA= 5
Asian= 1
Mixed= 1

All= 44.05 (8.81)
No SI= 43.98
High SI = 41.28

T-test for age
between no SI and
high SI 0.553

T-test for age
with discovery
cohort P = 0.887

Combined discovery and testing
cohort for state (suicidal ideation)
used for CFI-S analysis (Figure 3)

45 All
BP= 21
MDD= 11
SZA= 10
SZ= 3
No SI
BP= 17
MDD= 8
SZA= 9
SZ= 3
Intermediate SI
BP= 3
SZA= 1
High SI
BP= 7
MDD= 7
SZA= 4
SZ= 1

EA= 35
AA= 7
Asian= 2
Mixed= 1

All= 44.15 (9.68)
No SI= 44.12
High SI = 43.15

T-test for age
between no SI and
high SI 0.727

Testing cohort for trait predictions
(future hospitalizations for suicidality)

24 All
BP= 10
MDD= 9
SZA= 3
SZ= 2
No Hosp for SI
BP= 8
MDD= 8
SZA= 1
SZ= 2
Hosp for SI
BP= 2
MDD= 1
SZA= 2
SZ= 0

EA= 19
AA= 4
Mixed= 1

All= 46.51 (6.66)
No Hosp for SI
= 47.2
Hosp for SI
= 43.4

T-test for age
between no Hosp
for SI and Hosp for
SI 0.0430

T-test for age
with discovery
cohort P = 0.354

Abbreviation: BP, bipolar; MDD, major depressive disorder; PTSD, post-traumatic stress disorder; SZ, schizophrenia; SZA, schizoaffective disorder; SI, suicidal
ideation.
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convergence, the start of the gene had to map within 5 cM of the
location of a marker linked to the disorder.

CFG scoring. For CFG analysis (Figure 2e), the external cross-
validating lines of evidence were weighted such that findings in
human postmortem brain tissue, the target organ, were prioritized
over peripheral tissue findings and genetic findings, by giving
them twice as many points. Human brain expression evidence was
given 4 points, whereas human peripheral evidence was given 2
points and human genetic evidence was given a maximum of 2
points for association, and 1 point for linkage. Each line of
evidence was capped in such a way that any positive findings
within that line of evidence result in maximum points, regardless
of how many different studies support that single line of evidence,
to avoid potential popularity biases. In addition to our external
CFG score, we also prioritized genes based upon the initial gene
expression analyses used to identify them. Probesets identified by
gene expression analyses could receive a maximum of 4 points.
Thus, the maximum possible total CFG score for each gene was 12
points (4 points for the internal score and 8 points for the external
CFG score) (Table 2 and Supplementary Table S2). The scoring
system was decided upon before the analyses were carried out.
We sought to give twice as much weight to external score as to
internal in order to increase generalizability and avoid fit to cohort
of the prioritized genes.6 It has not escaped our attention that
other ways of scoring the lines of evidence may give slightly
different results in terms of prioritization, if not in terms of the list
of genes per se. Nevertheless, we feel this simple scoring system
provides a good separation of genes based on gene expression
evidence and on independent cross-validating evidence in the
field (Figure 2). In the future, with multiple large data sets,
machine learning approaches could be used and validated to
assign weights to CFG.

Clock gene database
We compiled a database of genes associated with circadian
function, by using a combination of review papers7,8 and searches
of existing databases CircaDB (http://circadb.hogeneschlab.org),
GeneCards (http://www.genecards.org) and GenAtlas (http://gena
tlas.medecine.univ-paris5.fr). Using the data we compiled from
these sources we identified a total of 1468 genes that show
circadian functioning. We further classified genes into ‘core’ clock
genes, that is, those genes that are the main engine driving
circadian function (n= 18), ‘immediate’ clock genes, that is, the
genes that directly input or output to the core clock (n= 331) and
‘distant’ clock genes, that is, genes that directly input or output to
the immediate clock genes (n= 1119).

Pathway analyses
IPA (Ingenuity Pathway Analyses, version 24390178, Qiagen, Hilden,
Germany), GeneGO MetaCore (Thompson Reuters, New York, NY,
USA) and KEGG (Kyoto Encyclopedia of Genes and Genomes)
(through the Partek Genomics Suite 6.6 software package) were
used to analyze the biological roles, including top canonical
pathways, and diseases, of the candidate genes resulting from our
work, as well as to identify genes in our data set that are the target
of existing drugs (Table 3 and Supplementary Tables S4 and S5). We
ran the pathway analyses together for all the AP and DE probesets
with a total CFG score of ⩾4, then for those of them who showed
stepwise change in the suicide completers validation cohort, then
for those of them who were nominally significant and finally for
those of them who survived Bonferroni correction (Table 3).

Validation analyses
For the AP analyses, we imported the Affymetrix microarray .chp
data files from the participants in the validation cohort of suicideTa
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completers into MAS5 Affymetrix Expression Console, alongside
the data files from the participants in the discovery cohort, to
compare expression levels of biomarkers in the validation cohort
with those in the no SI and high SI groups in the discovery cohort.
We then transferred the AP data to an Excel sheet and
transformed A into 0, M into 0.5 and P into 1.
For the DE analyses, we imported Affymetrix microarray .cel

files from the participants in the validation cohort of suicide
completers into Partek Genomic Suites. We then ran an RMA,
background corrected with quantile normalization, and a median
polish probeset summarization of all the chips from the validation
cohort to obtain the normalized expression levels of all probesets
for each chip. Partek normalizes expression data into a log base of
2 for visualization purposes. We non-logtransformed expression
data by taking 2 to the power of the transformed expression value.
We then used the non-logtransformed expression data to
compare expression levels of biomarkers in the validation cohort
with those in the no SI and high SI groups in the discovery cohort.
We then transferred the expression data to an Excel sheet.
For validation analyses of our candidate biomarker genes, we

examined which of the top candidate genes (Total CFG score of 4
or above), separately from AP and from DE, were stepwise
changed in expression from the no SI group to the high SI group
to the suicide completers group. We used an empirical cutoff of
33.3% of the maximum possible CFG score of 12, which also
permits the inclusion of potentially novel genes with maximal
internal score but no external evidence score. We imported the
Excel sheets with the raw expression data from AP and DE into
Partek, and statistical analyses were performed using a one-way
ANOVA for the stepwise changed probesets, and stringent
Bonferroni corrections for all the probesets tested (stepwise and
non-stepwise).

Clinical measures
The SASS is an 11-item scale for measuring mood and anxiety,
previously developed and described by us.4,9 The SASS has a set of
11 visual analog scales (7 for mood and 4 for anxiety) that ends up
providing a number ranging from 0 to 100 for mood state, and the
same for anxiety state. We have developed an Android app
version (Supplementary Figure S2).
CFI-S (Figure 3 and Supplementary Figure S2) is a 22-item scale

and Android app for suicide risk,4 which integrates, in a simple
binary manner (Yes—1 and No—0), similar to a polygenic risk
score, information about known life events, mental health,
physical health, stress, addictions and cultural factors that can
influence suicide risk.10,11 The scale was administered at
participant testing visits (n= 39), or scored based on retrospective
electronic medical record information and Diagnostic Interview for
Genetic Testing information (n= 48). When information was not
available for an item, it was not scored (NA).

Combining gene expression biomarkers and clinical measures
The Universal Predictor for Suicide (UP-Suicide) construct, our
primary end point, was decided upon as part of our apriori study
design to be broad spectrum, and combine our top Bonferroni
validated biomarkers with the phenomic (clinical) markers (SASS
and CFI-S). It is calculated as the average of three increased
markers (BioM-18 averaged increased Bonferroni biomarkers,
Anxiety, CFI-S) minus the average of two decreased markers
(BioM-32 averaged decreased Bonferroni biomarkers, Mood). All
individual markers are Z-scored by diagnosis, to account for
different ranges and be able to combine them into a composite
predictor.

Testing analyses
The test cohort for SI and the test cohort for future hospitalizations
analyses were assembled out of data that was RMA normalized by
diagnosis. Phenomic (clinical) and gene expression markers used
for predictions were z-scored by diagnosis, to be able to combine
different markers into panels and to avoid potential artifacts due
to different ranges of phene expression and gene expression in
different diagnoses. Markers were combined by computing
the average of the increased risk markers minus the average of
the decreased risk markers. Predictions were performed using
R-studio.

Predicting SI. Receiver-operating characteristic (ROC) analyses
between genomic and phenomic marker levels and SI were
performed by assigning participants with an HAMD-SI score of
2 and greater into the high SI category. We used the pROC
function of the R-studio. We used the z-scored biomarker and app
scores, running them in this ROC generating program against the
‘diagnostic’ groups in the independent test cohort (high SI vs the
rest of subjects). Additionally, ANOVA was performed between no
SI (HAMD-SI 0), intermediate (HAMD-SI 1) and high SI participants
(HAMD-SI 2 and above) and Pearson R (one-tail) was calculated
between HAMD-SI scores and marker levels (Table 4 and Figure 4).

Predicting future hospitalizations for suicidality. We conducted
analyses for hospitalizations in the years following testing
(on average 2.75 years, range 0.3–7.5 years; see Supplementary
Table S1). For each participant in the test cohort for future
hospitalizations, the study visit with highest levels for the marker
or combination of markers was selected as index visit (or with the
lowest levels, in the case of decreased markers). ROC analyses
between genomic and phenomic marker levels and future
hospitalizations were performed as described above, based on
assigning if participants had been hospitalized for suicidality
(ideation, attempts) or not following the index testing visit.
Additionally, a one tailed t-test with unequal variance was
performed between groups of participants with and without
hospitalizations for suicidality. Pearson R (one-tail) correlation was
performed between hospitalization frequency (number of hospi-
talizations for suicidality divided by duration of follow-up) and
marker scores. We conducted correlation analyses for hospitaliza-
tions frequency for all future hospitalizations due to suicidality as
this calculation, unlike the ROC and t-test, accounts for the actual
length of follow-up at our VA, which varied from participant to
participant. The ROC and t-test might in fact, if anything, under-
represent the power of the markers to predict, as the more severe
psychiatric patients are more likely to move geographically and/or
be lost to follow-up.

RESULTS
Discovery of biomarkers for SI
We conducted whole-genome gene expression profiling in the
blood samples from a longitudinally followed cohort of female
participants with psychiatric disorders that predispose to suicid-
ality. The samples were collected at repeated visits, 3–6 months
apart. State information about SI was collected from a ques-
tionnaire (HAMD) administered at the time of each blood draw
(Supplementary Table S1). Out of 51 female psychiatric partici-
pants (with a total of 123 visits) followed longitudinally in
our study, with a diagnosis of BP, MDD, schizophrenia and
schizoaffective disorder, there were 12 participants that switched
from a no SI (SI score of 0) to a high SI state (SI score of 2 and
above) at different visits, which was our intended discovery group
(Figure 2). We used a powerful within-participant design to
analyze data from these 12 participants and their 31 visits. A
within-participant design factors out genetic variability, as well as
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some medications, lifestyle and demographic effects on gene
expression, permitting identification of relevant signal with Ns as
small as 1.12 Another benefit of a within-participant design may be
accuracy/consistency of self-report of psychiatric symptoms
(‘phene expression’), similar in rationale to the signal detection
benefits it provides in gene expression.
For discovery, we used two methodologies: Absent/Present

(reflecting on/off of transcription) and Differential Expression
(reflecting more subtle gradual changes in expression levels). The
genes that tracked SI in each participant were identified in our
analyses. We used three thresholds for increase in expression
genes and for decrease in expression genes: ⩾ 33.3% (low), ⩾ 50%
(medium) and⩾ 80% (high) of the maximum scoring increased
and decreased gene across participants. Such a restrictive

approach was used as a way of minimizing false positives, even
at the risk of having false negatives. For example, there were genes
on each of the two lists, from AP and DE analyses, that had clear
prior evidence for involvement in suicidality, such as AKAP10
(ref. 13) (31.7%) and MED28 (ref. 13) (31.8%) from AP, and
S100B13,14 (31.7%) and SKA2 (ref. 15) (31.4%) for DE, but were not
included in our subsequent analyses because they did not meet our
apriori set 33.3% threshold. Notably, SKA2 reproduces our results in
males,2 as well as the work from Kaminsky and colleagues.15,16

Prioritization of biomarkers based on prior evidence in the field
These differentially expressed genes were then prioritized using a
Bayesian-like CFG approach (Figure 2) integrating all the

Figure 3. Convergent Functional Information for Suicide (CFI-S) scale testing in women. Prediction of high suicidal ideation in women in a
larger cohort that combines the discovery and test cohorts used for biomarker work. CFI-S was developed independently of any data from this
study, by compiling known socio-demographic and clinical risk factors for suicide. It is composed of 22 items that assess the influence of
mental health factors, as well as of life satisfaction, physical health, environmental stress, addictions, cultural factors known to influence
suicidal behavior, and two demographic factors, age and gender. Table depicts individual items and their ability to differentiate between no SI
and high SI.
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previously published human genetic evidence, postmortem brain
gene expression evidence and peripheral fluids evidence for
suicide in the field available at the time of our analyses
(September 2015). This is a way of identifying and prioritizing
disease relevant genomic biomarkers, extracting generalizable
signal out of potential cohort-specific noise and genetic

heterogeneity. We have built in our laboratory manually curated
databases of the psychiatric genomic and proteomic literature to
date, for use in CFG analyses. The CFG approach is thus a de facto
field-wide collaboration. We use in essence, in a Bayesian manner,
the whole body of knowledge in the field to leverage findings
from our discovery data sets.

Figure 4. UP-Suicide predicting suicidal ideation in the independent test cohort, and predicting future hospitalizations due to suicidality.
UP-Suicide is composed of the 50 Bonferroni validated biomarkers along with CFI-S scores and SASS (Mood and Anxiety scores). n= number
of testing visits. (a) Top left: Receiver operating curve identifying participants with suicidal ideation against participants with no SI or
intermediate SI. Top right: Y axis contains the average UP-Suicide scores with standard error of mean for no SI, intermediate SI and high SI.
Bottom right: Scatter plot depicting HAMD-SI score on the Y axis and UP-Suicide score on the X axis with linear trend line. Bottom: Table
summarizing descriptive statistics. (b) Top left: Receiver operating curve identifying participants with future hospitalizations due to suicidality
against participants without future hospitalizations due to suicidality. Top right: Y axis contains the average UP-Suicide scores with standard
error of mean for no future hospitalizations due to suicidality and participants with future hospitalizations due to suicidality. Bottom right:
Scatter plot depicting frequency of future hospitalizations due to suicidality on the Y axis and UP-Suicide score on the X axis with linear trend
line. Bottom: Table summarizing descriptive statistics.
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Validation of biomarkers for behavior in suicide completers
For validation in suicide completers, we used 1471 genes that had
a CFG score of 4 and above, from AP and DE, reflecting either
maximum internal score from discovery or additional external
literature cross-validating evidence. Out of these, 882 did not
show any stepwise change in suicide completers (NC, non-
concordant). As such, they may be involved primarily in ideation
and not in behavior (Supplementary Table S5). The remaining 589
genes (40.0%) had levels of expression that were changed
stepwise from no SI to high SI to suicide completion. In all, 396
of these genes (26.9%) were nominally significant, and 49 genes
(50 probesets—two for JUN) (3.33%) survived Bonferroni correc-
tion for multiple comparisons (Figure 2f). These genes are likely
involved in SI and suicidal behavior. (A person can have SI without
suicidal behavior, but cannot have suicidal behavior without SI.)

Selection of biomarkers for testing of predictive ability
For testing, we decided apriori to focus on the Bonferroni
validated biomarkers (49 genes, 50 probesets). We also examined
in a secondary analysis the top scoring biomarkers from both
discovery and prioritization (65 genes), so as to avoid potential
false negatives in the validation step due to possible postmortem
artifacts or extreme stringency of statistical cutoff (Supplementary
Figure S1). The top CFG scoring genes after the Bonferroni
validation step were BCL2 and GSK3B. The top CFG scoring genes
from the discovery and prioritization steps were FAM214A, CLTA,
HSPD1 and ZMYND8. Notably, all have co-directional gene
expression changes evidence in brains of suicide completers in
studies from other groups (Figure 2, Table 2 and Supplementary
Table S2).

Biological understanding
We also sought to understand the biology represented by the
biomarkers identified by us, and derive some mechanistic and
practical insights. We conducted: (1) unbiased biological pathway
analyses and hypothesis-driven mechanistic queries, (2) overall
disease involvement and specific neuropsychiatric disorders
queries and (3) overall drug modulation along with targeted
queries for omega-3, lithium and clozapine (Table 3 and
Supplementary Tables S3 and S4). Administration of omega-3s in
particular may be a mass-deployable therapeutic and preventive
strategy.18,19

The sets of biomarkers identified have biological roles in
inflammation, neurotrophins, inositol signaling, stress response,
and perhaps overall the switch between cell survival and
proliferation vs apoptosis (Table 3 and Supplementary Table S5).
We also examined evidence for the involvement of these

biomarkers for suicidality in other psychiatric disorders, permitting
us to address issues of context and specificity (Supplementary
Table S3). FAM214A, MOB3B, ZNF548 and ARHGAP35 seem to be
relatively specific for suicide, based on the evidence to date in the
field. BCL2, GSK3B, HSPD1 and PER1 are less specific for suicide,
having equally high evidence for involvement in suicide and in
other psychiatric disorders.
These boundaries and understanding will likely change as

additional evidence in the field accumulates. For example, HSPD1,
discovered in this work as a top biomarker increased in expression
in suicidality, is also increased in expression in the blood following
anti-depressant treatment,20,21 and thus might be a useful
biomarker for treatment-emergent suicidal ideation.
A number of the genes are changed in expression in opposite

direction in suicide in this study vs high mood in our previous
mood biomarker study22—SSBP2, ZNF596 (Supplementary Table
S3), suggesting that suicidal participants are in a low mood state.
Also, some of the top suicide biomarkers are changed in
expression in the same direction as in high psychosis participants

in a previous psychosis biomarker study of ours23—HERC4,
PIP5K1B, SLC35B3, SNX27, KIR2DL4 and NUDT10 (Supplementary
Table S3), suggesting that suicidal participants may be in a
psychosis-like state. Taken together, the data indicate that
suicidality could be viewed as a psychotic dysphoric state. This
molecularly informed view is consistent with the emerging clinical
evidence in the field.24

A number of top biomarkers identified by us have biological
roles that are related to the core circadian clock (such as PER1), or
modulate the circadian clock (such as CSNK1A1), or show at least
some circadian pattern (such as HTRA1). To be able to ascertain all
the genes in our data set that were circadian and do estimates for
enrichment, we compiled from the literature a database of all the
known genes that fall into these three categories, numbering a
total of 1468 genes. Using an estimate of about 21 000 genes in
the human genome, that gives about 7% of genes having some
circadian pattern. Out of our 49 Bonferroni validated biomarker
genes, 7 had circadian evidence (14.3%) (Supplementary Table S3),
suggesting a two-fold enrichment for circadian genes. Circadian
clock abnormalities are related to mood disorders,8,25 and sleep
abnormalities have been implicated in suicide.26

Finally, we conducted biological pathway analyses on the genes
that, after discovery and prioritization, were stepwise changed in
suicide completers (n= 882) and may be involved in ideation and
behavior, vs those that were not stepwise changed (n= 589), and
that may only be involved in ideation (Supplementary Table S5).
The genes involved in ideation map to pathways related to PI3K
signaling. The genes involved in behavior map to pathways
related to glucocorticoid receptor signaling. This is consistent with
ideation without behavior being related to neurotrophic factors,
and ideation with behavior being related to stress.

Clinical information
We used a simple new 22-item scale and app for suicide risk, CFI-S,
which scores in a simple binary manner and integrates
information about known life events, mental health, physical
health, stress, addictions and cultural factors that can influence
suicide risk.10,4,11 Clinical risk predictors and scales are of high
interest in the military27 and in the general population at large.28

Our scale aims for comprehensiveness, simplicity and quantifica-
tion similar to a polygenic risk score, and may provide context to
the blood biomarker signals. We analyzed which items of the CFI-S
scale were the most significantly different between no and high SI
live participants (Figure 3). We identified seven items that were
significantly different: lack of positive relationships/social isolation
(P= 0.004), substance abuse (P= 0.0071), history of impulsive
behaviors (P= 0.015), lack of religious beliefs (P= 0.018), past
history of suicidal acts/gestures (P= 0.025), rejection (P= 0.029)
and history of command auditory hallucinations (P= 0.045). Social
isolation increases vulnerability to stress, which is independently
consistent with our biological marker results.
We also used an 11-item scale for measuring mood and anxiety,

the SASS.4 The SASS is a set of 11 visual analog scales (7 for mood
and 4 for anxiety) that ends up providing a number ranging from
0 to 100 for mood state, and the same for anxiety state.

Testing for predictive ability
The best single increased (risk) biomarker predictor for SI state is
EPB41L5 (ROC area under the curve (AUC) 0.68, P-value 0.06;
Pearson Correlation 0.22, P-value 0.03), an increase in expression,
Bonferroni validated biomarker (Tables 2 and 4). This biomarker
was also identified co-directionally in our previous male work,4

and has no evidence for involvement in other psychiatric
disorders. The best single decreased (protective) biomarker
predictor for SI is PIK3C3 (ROC AUC 0.65, P-value 0.1; Pearson
Correlation − 0.21, P-value 0.037), a decrease in expression,
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Bonferroni validated biomarker (Tables 2 and 4). PIK3C3 is also
decreased in expression in postmortem brains in depression.29

The best single increased (risk) biomarker predictor for future
hospitalizations for suicidality is HTRA1 (ROC AUC 0.84, P-value
0.01; Cox regression hazard ratio 4.55, P-value 0.01), an increase in
expression, Bonferroni validated biomarker (Tables 2 and 4).
HTRA1 is also increased in expression in the blood of
schizophrenics.30 The best single decreased (protective) biomarker
predictor for future hospitalizations for suicidality is CSNK1A1
(ROC AUC 0.96, P-value 0.0007; Cox Regression Hazard Ratio 620.5,
P-value 0.02), a top discovery and prioritization, non-Bonferroni
validated biomarker (Tables 2 and 4). This biomarker was also
identified co-directionally in our previous male work.4 CSNK1A1
(casein kinase 1, alpha 1) is a circadian clock gene, part of the
input into the core clock. It is decreased in expression in suicidality
in our work, and decreased in postmortem brains of alcoholics.31

Interestingly, it is increased in expression by mood stabilizers32

and by omega-3 fatty acids.33 PIK3C3 is also a good predictor for
future hospitalizations for suicidality (ROC AUC 0.9, P-value 0.011).
BCL2, the top CFG scoring biomarker from validation, has good

accuracy at predicting future hospitalizations for suicidality (ROC
AUC 0.89, P-value 0.007; Cox regression hazard ratio 3.08, P-value
0.01). The panel of 50 validated biomarkers, BioM-50, had even
better accuracy at predicting future hospitalizations for suicidality
(ROC AUC 0.94, P-value 0.002; Cox regression hazard ratio 89.46,
P-value 0.02). Overall, in women, blood biomarkers seemed to
perform better for predicting future hospitalizations for suicidality
(trait) than for predicting SI (state). This is different from the trend
we saw in men,4 where blood biomarkers were somewhat better
predictors of state than of trait. These gender differences are
interesting, and merit exploration in additional future comparative
studies.
CFI-S has very good accuracy (ROC AUC 0.84, P-value 0.002;

Pearson Correlation 0.39, P-value 0.001) at predicting SI in
psychiatric participants across diagnostic groups. The other app,
SASS, also has very good accuracy (ROC AUC 0.81, P-value 0.003;
Pearson Correlation 0.38, P-value 0.0005) at predicting SI in
women psychiatric participants. The combination of the apps is
synergistic (ROC AUC 0.87, P-value 0.0009; Pearson Correlation
0.48, P-value 0.0001). Thus, even without the benefit of potentially
more costly, invasive and labor intensive blood biomarker testing,
clinically useful predictions could be made with the apps.
Our apriori primary end point was a combined universal

predictor for suicide (UP-Suicide), composed of the scores in
CFI-S and in SASS (Mood, Anxiety), along with the Bonferroni
validated biomarkers (n= 50) resulting from the sequential
discovery for ideation, prioritization with CFG, and validation for
behavior in suicide completers steps. UP-Suicide is a good
predictor of SI (ROC AUC 0.82, P-value 0.003; Pearson Correlation
0.43, P-value 0.0003) (Table 4 and Figure 4). UP-Suicide also has
good predictive ability for future psychiatric hospitalizations for
suicidality (ROC AUC 0.78, P-value 0.032; Cox Regression Hazard
Ratio 9.61, P-value 0.01). Overall, while there may post hoc appear
to be better individual predictors for SI and for future hospitaliza-
tions (Table 4), our apriori primary broad-spectrum end point
(UP-Suicide) has been successful, may be more robust to effects
of fit to cohort, and might be more generalizable to other
populations.

DISCUSSION
We carried out systematic studies to identify clinically useful
predictors for suicide in women, an understudied population to
date. Our work focuses on identifying markers involved in SI and
suicidal behavior, including suicide completion. Markers involved
in behavior may be on a continuum with some of the markers
involved in ideation, varying in the degree of expression changes
from less severe (ideation) to more severe (behavior). One cannot

have suicidal behavior without SI, but it may be possible to have
SI without suicidal behavior.
As a first step, we sought to use a powerful but difficult to

conduct within-participant design for discovery of blood biomar-
kers. Such a design is more informative than case–control, case–
case or even identical twins designs. The power of a within-
participants longitudinal design for multi-omic discovery was first
illustrated by Snyder and colleagues12 in a landmark paper with an
n= 1. We also have previously demonstrated its power in an initial
pilot study in male bipolar participants (n=9 out of 75 showed a
switch from a no suicidal ideation to a high suicidal ideation state),3

and then a larger studies in males with major psychiatric disorders
(n=37 out of 217).4 In this small (n=12 out of 51) but very valuable
pilot study in women, we followed a similar path.
Second, we conducted whole-genome gene expression dis-

covery studies in the participants that exhibited the switches,
using a longitudinal within-participant design, that factors out
genetic variability and reduces environmental variability as well.
We have demonstrated the power of such a design in our earlier
successful pilot work on suicide biomarkers in men with an n= 9.3

Our current n= 12 is comparable (Figure 2). Genes whose levels of
expression tracked SI within each participant were identified.
Third, the lists of top candidate biomarkers for SI from the

discovery and prioritization step (genes with a CFG score of 4 and
above, reflecting genes that have maximal experimental internal
evidence from this study and/or additional external literature
cross-validating evidence) were additionally validated for involve-
ment in suicidal behavior in a cohort of demographically matched
suicide completers from the coroner’s office (n= 6) (Figure 2).
We ended up with 50 biomarkers that survived Bonferroni

correction (49 genes; one gene, JUN, had two different probesets
that validated). Additionally, we tested 65 other biomarkers that
were non-Bonferroni validated but had maximum internal score of
4 in discovery and a CFG score of 6 and above, which means that
in addition to strong evidence in this study they also had prior
independent evidence of involvement in suicide from other
studies. These additional biomarkers are likely involved in suicide
but did not make our Bonferroni validation cutoff due to its
stringency or potential technical/postmortem artifact reasons
(Table 2 and Supplementary Table S2).
Fourth, we describe the use in a female population of the

simple and comprehensive phenomic (clinical) risk assessment
scale, CFI-S scale,4 as well as of the companion app to it for use by
clinicians and individuals (Supplementary Figure S2). CFI-S was
developed independently of any data from this study, by
integrating known risk factors for suicide from the clinical
literature. It has a total of 20 items (scored in a binary manner—
1 for present, 0 for absent, NA for information not available) that
assess the influence of mental health factors, as well as of life
satisfaction, physical health, environmental stress, addictions and
cultural factors known to influence suicidal behavior. It also has
two demographics risk factors items: age and gender. The result is
a simple polyphenic risk score with an absolute range of 0–22,
normalized by the number of items on which we had available
information, resulting in a score in the range from 0 to 1 (Figure 3
and Supplementary Figure S2). We present data validating the
CFI-S in women, in the combined discovery and test cohort of live
psychiatric participants (Figure 3). We identified the chronic stress of
lack of positive relationships/social isolation as the top differential
item between no and high SI in women, which is consistent with
biological data from the biomarker side of our study.
Fifth, we also assessed anxiety and mood, using a visual analog

SASS, previously described by us,4,9 for which we now have
developed an app version (Supplementary Figure S2). Using a
PhenoChipping approach9 in our discovery cohort of psychiatric
participants, we show that anxiety measures cluster with SI and
CFI-S, and mood measures are in the opposite cluster, suggesting
that our participants have high SI when they have high anxiety
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and low mood (Figure 2). We would also like to include in the
future measures of psychosis, and of stress, to be more
comprehensive.
Sixth, we examined how the biomarkers identified by us are

able to predict state (SI) in a larger independent cohort of women
psychiatric participants (n= 33 participants).
Seventh, we examined whether the biomarkers are able to

predict trait (future hospitalizations for suicidal behavior) in
women psychiatric participants (n= 24).
Last but not least, we demonstrate how our apriori primary

end point, a comprehensive universal predictor for suicide
(UP-Suicide), composed of the combination of the Bonferroni
validated biomarkers (n= 50), along with the scores from CFI-S and
SASS, predicts state (SI) and trait (future psychiatric hospitaliza-
tions for suicidality).
The rationale for identifying blood biomarkers as opposed to

brain biomarkers is a pragmatic one—the brain cannot be readily
accessed in live individuals. Other peripheral fluids, such as
cerebrospinal fluid, require more invasive and painful procedures.
Nevertheless, it is likely that many of the peripheral blood
transcriptomic changes are not necessarily mirroring what is
happening in the brain, and vice-versa. The keys to find peripheral
biomarkers5 are, first, to have a powerful discovery approach, such
as our within-participant design, that closely tracks the phenotype
you are trying to measure and reduces noise. Second, cross-
validating and prioritizing the results with other lines of evidence,
such as brain gene expression and genetic data, are important in
order to establish relevance to disease and generalizability of
findings. Third, it is important to validate for behavior in an
independent cohort with a robust and relevant phenotype, in
these case suicide completers. Fourth, testing for predictive ability
in independent/prospective cohorts is a must (Supplementary
Figure S1).
Biomarkers that survive such a rigorous stepwise discovery,

prioritization, validation and testing process are likely directly
relevant to the disorder studied. As such, we endeavored to study
their biology, whether they are involved in other psychiatric
disorders or are relatively specific for suicide, and whether they
are modulated by existing drugs in general, and drugs known to
treat suicidality in particular.
We have identified a series of biomarkers that seem to be

changed in opposite direction in suicide vs in treatments with
omega-3 fatty acids, lithium and clozapine (Supplementary Table
S4). These biomarkers could potentially be used to stratify patients
to different treatment approaches, and monitor their response.
BCL2, JUN, GHA1, ENTPD1, ITIH5, MBNL1 and SSBP2 are changed
in expression by two of these three treatments, suggesting that
they may be core to the anti-suicidal mechanism of these drugs.
Interestingly, MBNL1, which is decreased in expression in
suicidality, was identified as increased in expression in long-
evity/healthy aging.34 BCL2, CAT and JUN may be useful blood
pharmacogenomic markers of response to lithium. CD84, MBNL1
and RAB22A may be useful blood pharmacogenomic markers of
response to clozapine. NDRG1, FOXP1, AFF3, ATXN1, CSNK1A1,
ENTPD1, ITIH5, PRDX3 and SSBP2 may be useful blood pharma-
cogenomic markers of response to omega-3 fatty acids. Three
existing drugs used for other indications have been identified as
targeting the top suicide biomarkers identified by us
(Supplementary Table S4), and could potentially be re-purposed
for testing in treatment of acute suicidality: anakinra (inhibiting
ILR1), enzastaurin (inhibiting AKT3) and tesevatinib (inhibiting
EPHB4). Additionally, Connectivity Map35 analyses (Supplementary
Table S6) identified novel compounds that induce gene expression
signatures that are the opposite of those present in suicide, and
might generate leads and/or be tested for use to treat/prevent
suicidality, including mifepristone, LY294002, acetylsalicylic acid,
estradiol, buspirone, corticosterone, metformin, diphenhydramine,
haloperidol and fluoxetine (Supplementary Table S6).Ta
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Of note, a number of biomarkers from the current study in
women reproduce and are co-directional with our previous
findings in men (Table 5, Table 2 and Supplementary Table S2),
whereas others had changes in opposite directions (Table 2 and
Supplementary Table S2), underlying the issue of biological
context and differences in suicidality between the two genders.
This avenue merits attention in the field, and detailed future
comparative studies, as do studies by diagnostic groups.
Before any testing, we planned to use a comprehensive

combination of genomic data (specifically, the top validated
biomarkers) and phenomic data (specifically, the CFI-S and the
SASS) as the primary end point measure, a broad-spectrum
universal predictor (UP-Suicide) for state SI and trait future
hospitalizations. It has not escaped our attention that certain
single biomarkers, particular phenotypic items, or combinations
thereof seem to perform better than the UP-Suicide in one or
another type of prediction (see Table 4). However, since such

markers and combinations were not chosen by us apriori and such
insights derive from testing, we cannot exclude a fit to cohort
effect for them and reserve judgement as to their robustness as
predictors until further testing in additional independent cohorts,
by us and others. What we can put forward for now based on the
current work is the UP-Suicide, which seems to be a robust
predictor across different scenarios and diagnostic groups.
Our study has a number of limitations. All this work was carried

out in psychiatric patients, a high-risk group, and it remains to be
seen how such predictors apply to non-psychiatric participants.
For the UP-Suicide testing, the prevalence rate for suicidality in our
test cohorts was 21% (7 out of 33 for SI and 5 out of 24 for future
hospitalizations) (Table 4). Of note, this rate was remarkably similar
to our previous work in men.4 It is to be noted that the incidence
of suicidality in the general population is lower, for example at
1.5% in adolescents in an European cohort36 and estimates of
0.2–2% in the United States,37 which underlines the rationale

Figure 5. Study participant who committed suicide. Subject phchp328 was a 38-year-old divorced Caucasian female with a long history of
MDD, PTSD, BP and polysubstance abuse/dependence. She had multiple psychiatric hospitalizations due to suicidal ideation (n= 21) and due
to suicidal attempts (n= 3), in the 5 years before her suicide. She committed suicide by overdose with pills, leaving behind a suicide note
addressed to her mother. (a) Percentile for scores on top predictors in all the female subjects in this study (n= 105 for biomarkers and n= 88
for apps and UP-Suicide). Her panel of Bonferroni validated biomarkers (BioM50) score, apps score (CFI-S+SASS), and UP-Suicide predictor
score at a study visit (Visit 1) were at the 100% of the scores of all the psychiatric participant visits tested in this current study. Of note, that
testing was conducted during an inpatient hospitalization due to suicidal ideation. While her scores did improve at subsequent outpatient
testing visits (Visits 2 and 3), this high watermark score indicated her high risk. After the last testing visit in our study, she had four subsequent
psychiatric hospitalizations: three due to suicidal ideation, one for opioid withdrawal/detox (the last one), ending 2 weeks before date of
committing suicide (T). For decreased biomarkers, a higher percentile corresponds to lower expression values. Only 5 of the 32 predictors
(biomarkers, clinical, combined) were discordant between the highest and lowest SI visit (italicized). In all, 17 of the 32 predictors (bold) were
stepwise decreased corresponding to her SI scores. One of the biomarkers (HTRA1) was in the 100% of the subjects tested, as was the panel of
50 validated markers (BioM-50), the combination of the clinical measures/apps (CFI-S+SASS), and the combined biomarker panels and clinical/
apps predictor (UP-Suicide). (b) Tri-dimensional representation of the percentilized scores of the combination of the two apps, CFI-S and SASS
(Anxiety and Mood) of all the female participant visits tested in the current study (n= 87) and all the male participant visits in our previous
work (n= 317). A tri-dimensional scatter plot was created using Partek. Tri-dimensional 95% confidence intervals were inserted as ellipsoids,
color coded blue, yellow and red for No SI, Intermediate SI and High SI, respectively. Subject phchp328visit1 had the highest Euclidian D
(distance from origin), as indicated by the arrow. This is the only subject that completed suicide as far as we know, as of the end of this study
in November 2015. BP, bipolar disorder; MDD, major depressive disorder; PTSD, post-traumatic stress disorder.
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of using a very high-risk group like we did for magnifying and
enabling signal detection with a relatively small N. Over 40% of
the live participants from the discovery cohort (5 out of 12) and
independent test cohort (14 out of 33) are non-VA, and all the
suicide completers used for validation are from the general
population, not VA, so we believe our results have broader
relevance. Studies with larger numbers and longer follow-up,
currently ongoing, as well as studies in different clinical settings,
may provide more generalizability.
The current studies were carried out exclusively in females.

Similar work is needed in larger meta-analyses across gender, in
participants with and without psychiatric disorders, to find
generalizable predictors. Conversely, a narrow focus by gender,
diagnosis (or lack of), and perhaps age, may be needed to find
more individualized predictors. Such work is ongoing in our group.
In conclusion, we have advanced the biological understanding

of suicidality in women, highlighting behavioral and biological
mechanisms related to inflammation, neurotrophic factors,
circadian clock, stress response and apoptosis. Biomarkers that
may track treatment response to lithium and intriguingly, omega-
3 fatty acids, have been identified. Of equal importance, we
developed instruments (biomarkers and apps) for predicting
suicidality, that do not require asking the person assessed if they
have suicidal thoughts, as individuals who are truly suicidal often
do not share that information with people close to them or with
clinicians. We propose that the widespread use of such risk
prediction tests as part of routine or targeted health-care
assessments will lead to early disease interception followed by
preventive lifestyle modifications or treatment. Given the magni-
tude and urgency of the problem, the importance of efforts to
implement such tools cannot be overstated. We note that we have
sadly lost one study participant to suicide (Figure 5), that in
retrospect was highlighted by UP-Suicide as being the highest risk
participant in our study.

Note
Supplementary information is also available from the Niculescu
Laboratory website (www.neurophenomics.info).
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Supplementary Information: 
 
Figure S1 Sequential flow of biomarker discovery, prioritization, validation and testing.  
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Figure S2. SASS and CFI-S questionnaires and apps. 

Simplified Affective State Scale (SASS) 
For each item, mark the scale with a vertical line where you think you are at this 
moment in time, compared to lowest and highest you ever remember being: 
 
Mood Subscale 
 
1) Mood 
 
How good is your mood right now?  
 
[------------------------------------------------------------------------] 
Lowest                                                                           Highest 
 
 
2) Motivation to do things 
 
How is your motivation, your drive, your determination to do things right now?  
 
 [------------------------------------------------------------------------] 
Lowest                                                                           Highest 
 
 
3) Movement activity 
 
How high is your physical energy and the amount of moving about that you feel like 
doing right now? 
 
 [------------------------------------------------------------------------] 
Lowest                                                                           Highest 
 
 
4) Thinking activity 
 
How high is your mental energy and thinking activity going on in your mind right now? 
 
 [------------------------------------------------------------------------] 
Lowest                                                                           Highest 
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5) Self-esteem 
 
How good do you feel about yourself and your accomplishments right now? 
 
[------------------------------------------------------------------------] 
Lowest                                                                           Highest 
 
 
6) Interest in pleasurable activities 
 
How high is your interest to do things that are fun and enjoyable right now?  
 
[------------------------------------------------------------------------] 
Lowest                                                                           Highest 
 
 
7) Appetite 
 
How high is your appetite and desire for food right now?  
 
[------------------------------------------------------------------------] 
Lowest                                                                           Highest 
 
 

Anxiety Subscale 

 
1) Anxiety 
 
How anxious are you right now?  
 
[------------------------------------------------------------------------] 
Lowest                                                                           Highest 
 
2) Uncertainty 
 
How uncertain about things do you feel right now? 
 
[------------------------------------------------------------------------] 
Lowest                                                                           Highest 
 
3) Fear 
 
How frightened about things do you feel right now?  
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[------------------------------------------------------------------------] 
Lowest                                                                           Highest 
 
4) Anger 
 
How angry about things do you feel right now? 
 
 [------------------------------------------------------------------------] 
Lowest                                                                           Highest 
 
 
 
Comments (optional):  
Describe events or actions that you think are influencing how you feel now. Describe 
any additional feelings you might have at this moment in time: 
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Convergent Functional Information for Suicide (CFI-S) Scale.  Items are scored 1 for Yes, 0  for  
No. Total Score has a maximum possible of 22. Final Score (normalized) is Total Score divided by number of items that were 
scored, as for some items information might not be available (NA), so they are not scored. 

Items Yes No NA Domain Type 
Increased 
Reasons 

(IR) 
Decreased 

Barriers 
(DB) 

1. Psychiatric illness diagnosed and treated     Mental Health IR 

2. With poor treatment compliance     Mental Health DB 

3. Family history of suicide in blood relatives     Mental Health IR 

4. Personally knowing somebody who 
committed suicide     Cultural 

Factors 
DB 

5. History of abuse: physical, sexual, 
emotional, neglect     Life Satisfaction IR 

6. Acute/severe medical illness, including 
acute pain (“I just can’t stand this pain 
anymore.”) (within last 3 months)  

   Physical Health IR 

7. Acute stress: Losses, grief (within last 3 
months)     Environmental 

Stress 
IR 

8. Chronic stress: perceived uselessness, not 
feeling needed, burden to extended kin.     Environmental 

Stress 
IR 

9. History of excessive introversion, 
conscientiousness (including planned 
suicide attempts)   

   Mental Health IR 

10. Dissatisfaction with  life at this moment in 
time     Life Satisfaction IR 

11. Lack of hope for the future     Life Satisfaction IR 

12. Current substance abuse    Addictions DB 

13. Past history of suicidal acts/gestures    Mental Health DB 

14. Lack of religious beliefs    Cultural Factors DB 

15. Acute stress: Rejection (within last 3 
months)     Environmental 

Stress 
IR 

16. Chronic stress: lack of positive 
relationships, social isolation     Environmental 

Stress 
DB 

17. History of excessive extroversion and 
impulsive behaviors (including rage, anger, 
physical fights, seeking revenge)  

   Mental Health DB 

18. Lack of coping skills when  faced with 
stress (cracks under pressure)    Mental Health DB 

19. Lack of children. If has children, not in 
touch /not helping take care of them.    Life Satisfaction DB 
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20. History of command hallucinations of self-
directed violence    Mental Health IR 

21. Age: Older >60 or Younger <25     Age IR 

22. Gender: Male     Gender DB 
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Table S1.  Detailed Demographics 

Cohort 1: Discovery Cohort (n=12) (31 visits) 
Participant ID visit Veteran Status Diagnosis Age Gender Ethnicity HAMD SI 

phchp034v1 NON-VA BP 51 F Asian 
American 0 

phchp034v2 NON-VA BP 52 F Asian 
American 3 

phchp043v1 NON-VA BP 30 F Caucasian 2 

phchp043v2 NON-VA BP 31 F Caucasian 0 

phchp043v3 NON-VA BP 31 F Caucasian 0 

phchp055v1   BP 46 F Caucasian 4 

phchp055v2   BP 46 F Caucasian 0 

phchp055v3   BP 46 F Caucasian 0 

phchp097v1 NON-VA SZA 25 F Caucasian 0 

phchp097v2 NON-VA SZA 26 F Caucasian 2 

phchp131v1   SZ 54 F African 
American 3 

phchp131v3   SZ 56 F African 
American 0 

phchp170v1 NON-VA MDD 26 F Caucasian 2 

phchp170v2 NON-VA MDD 26 F Caucasian 0 

phchp170v3 NON-VA MDD 26 F Caucasian 0 

phchp223v1 NON-VA SZA 60 F Caucasian 2 

phchp223v2 NON-VA SZA 60 F Caucasian 0 

phchp223v3 NON-VA SZA 61 F Caucasian 0 

phchp318v1   MDD 57 F Caucasian 2 

phchp318v2   MDD 57 F Caucasian 0 

phchp328v1   MDD 37 F Caucasian 3 

phchp328v2   MDD 38 F Caucasian 2 

phchp328v3   MDD 38 F Caucasian 0 

phchp332v1   SZA 47 F African 
American 4 

phchp332v2   SZA 48 F African 
American 0 

phchp332v3   SZA 48 F African 
American 0 

phchp334v1   BP 50 F Caucasian 4 

phchp334v2   BP 50 F Caucasian 0 

phchp334v3   BP 51 F Caucasian 0 

phchp340v1   MDD 51 F Caucasian 2 

phchp340v2   MDD 51 F Caucasian 0 
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Coroner's Office Validation Cohort –Toxicology 

Cohort 2: Coroner's Office Validation Cohort -gene expression data (n=6) 
Subject ID visit Psych 1Dx Age Gender Ethnicity Cause of Death 

INBRAIN020 Depression 55 F Caucasian Single GSW to chest 

INBRAIN026 None 57 F Caucasian Single GSW to head 

INBRAIN029 PTSD 36 F Caucasian Asphyxiation (duct tape) 

INBRAIN032 Bipolar 44 F Caucasian Single GSW to head 

INBRAIN034 Depression 50 F Caucasian Single GSW to chest 

INBRAIN050 Depression 19 F African American Single GSW under chin 
 

Coroner's Office Validation Cohort - Toxicology 
Subject ID visit Toxicology 

INBRAIN020 

clonazepam 6.7 
7-aminoclonazepam 32.9 

duloxetine 68.7 
trazodone 0.21 

INBRAIN026 CAFFEINE POSITIVE 

INBRAIN029 NA 

INBRAIN032 CAFFEINE POSITIVE 

INBRAIN034 

Oxazepam 54.5 
Temazepam 395 

Gabapentin 1 
Zolpidem 571 

Temazepam >2500 
Oxazepam>2500 
Hydrocodone 88 

Hydromorphine 161 

INBRAIN050 NA 
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Cohort 3: Test Cohort for Suicidal Ideation (n=33) (74 visits) 
Participant ID 

visit Veteran Status Diagnosis Age Gender Ethnicity HAMD SI 

phchp018v1 NON-VA SZA 54 F Caucasian 0 

phchp028v1 NON-VA BP 50 F Asian 1 

phchp028v2 NON-VA BP 50 F Asian 1 

phchp035v1 NON-VA BP 36 F Caucasian 0 

phchp035v2 NON-VA BP 37 F Caucasian 0 

phchp035v3 NON-VA BP 37 F Caucasian 0 

phchp037v1 NON-VA BP 52 F Caucasian 0 

phchp063v1 NON-VA SZ 46 F African American 0 

phchp071v1 NON-VA SZA 50 F African American 0 

phchp074v1   SZA 46 F African American 0 

phchp074v2   SZA 46 F African American 0 

phchp074v3   SZA 46 F African American 0 

phchp076v1   SZA 41 F African American 2 

phchp076v2   SZA 41 F African American 1 

phchp076v3   SZA 41 F African American 1 

phchp084v1   BP 49 F Caucasian 0 

phchp084v2   BP 49 F Caucasian 0 

phchp084v3   BP 50 F Caucasian 0 

phchp106v1   BP 28 F Mixed 0 

phchp106v2   BP 28 F Mixed 0 

phchp106v3   BP 29 F Mixed 0 

phchp130v1   MDD 42 F Caucasian 0 

phchp130v2   MDD 42 F Caucasian 0 

phchp130v3   MDD 42 F Caucasian 0 

phchp141v1   BP 47 F Caucasian 1 

phchp141v2   BP 47 F Caucasian 0 

phchp141v3   BP 47 F Caucasian 1 

phchp156v1   BP 35 F Caucasian 2 

phchp160v1 NON-VA SZA 41 F Caucasian 0 

phchp160v2 NON-VA SZA 41 F Caucasian 0 

phchp160v3 NON-VA SZA 41 F Caucasian 0 

phchp164v1   MDD 48 F Caucasian 0 

phchp164v2   MDD 49 F Caucasian 0 

phchp164v3   MDD 49 F Caucasian 0 

phchp172v1 NON-VA BP 24 F Caucasian 0 

phchp172v2 NON-VA BP 24 F Caucasian 0 

phchp172v3 NON-VA BP 25 F Caucasian 0 
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phchp177v1   SZ 39 F Caucasian 0 

phchp177v2   SZ 39 F Caucasian 0 

phchp180v1 NON-VA BP 47 F Caucasian 0 

phchp180v2 NON-VA BP 47 F Caucasian 0 

phchp180v3 NON-VA BP 47 F Caucasian 0 

phchp181v1 NON-VA BP 28 F Caucasian 0 

phchp181v3 NON-VA BP 28 F Caucasian 0 

phchp181v4 NON-VA BP 29 F Caucasian 0 

phchp204v1 NON-VA BP 49 F Caucasian 0 

phchp204v2 NON-VA BP 49 F Caucasian 0 

phchp204v3 NON-VA BP 49 F Caucasian 0 

phchp232v1 NON-VA SZA 38 F Caucasian 0 

phchp232v2 NON-VA SZA 38 F Caucasian 0 

phchp232v3 NON-VA SZA 38 F Caucasian 0 

phchp239v1 NON-VA SZA 54 F African American 0 

phchp239v2 NON-VA SZA 54 F African American 0 

phchp239v3 NON-VA SZA 54 F African American 0 

phchp240v1   MDD 55 F Caucasian 0 

phchp240v2   MDD 55 F Caucasian 0 

phchp240v3   MDD 56 F Caucasian 0 

phchp254v1   MDD 49 F Caucasian 0 

phchp254v2   MDD 49 F Caucasian 0 

phchp254v3   MDD 50 F Caucasian 0 

phchp258v1   BP 52 F Caucasian 0 

phchp258v2   BP 52 F Caucasian 0 

phchp285v1   BP 56 F Caucasian 0 

phchp285v2   BP 56 F Caucasian 1 

phchp291v1   BP 45 F Caucasian 0 

phchp291v2   BP 46 F Caucasian 0 

phchp291v3   BP 47 F Caucasian 0 

phchp294v1 NON-VA BP 20 F Caucasian 2 

phchp307v1   MDD 53 F Caucasian 2 

phchp330v1   BP 45 F Caucasian 3 

phchp338v1   BP 51 F Caucasian 0 

phchp338v2   BP 51 F Caucasian 0 

phchp353v1   MDD 45 F Caucasian 2 

phchp355v1   MDD 50 F Caucasian 3 
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Cohort 4: Testing cohort for future hospitalizations for suicidality (n=24) (59 chips) 

Participant ID 
visit Diagnosis Age Gender Ethnicity Years 

Followed 

Number of All 
Future 

Hospitalizations 
Due to Suicidality 

Hospitalizations 
Frequency Due to 

Suicidality 

            SI SA SI SA 

phchp055v1 BP 46 F Caucasian 3.482192 0 1 0 0.287175 

phchp055v2 BP 46 F Caucasian 3.175342 0 0 0 0 

phchp055v3 BP 46 F Caucasian 2.893151 0 0 0 0 

phchp074v1 SZA 46 F African 
American 1.882192 0 0 0 0 

phchp074v2 SZA 46 F African 
American 1.583562 0 0 0 0 

phchp074v3 SZA 46 F African 
American 1.326027 0 0 0 0 

phchp076v1 SZA 41 F African 
American 7.490411 2 0 0.267008 0 

phchp076v2 SZA 41 F African 
American 7.210959 1 0 0.138678 0 

phchp076v3 SZA 41 F African 
American 6.991781 1 0 0.143025 0 

phchp084v1 BP 49 F Caucasian 7.032877 0 0 0 0 

phchp084v2 BP 49 F Caucasian 6.835616 0 0 0 0 

phchp084v3 BP 50 F Caucasian 6.567123 0 0 0 0 

phchp106v1 BP 28 F Mixed 5.446575 0 0 0 0 

phchp106v2 BP 28 F Mixed 5.205479 0 0 0 0 

phchp106v3 BP 29 F Mixed 4.961644 0 0 0 0 

phchp130v1 MDD 42 F Caucasian 4.939726 0 0 0 0 

phchp130v2 MDD 42 F Caucasian 4.641096 0 0 0 0 

phchp130v3 MDD 42 F Caucasian 4.386301 0 0 0 0 

phchp131v1 SZ 54 F African 
American 1.671233 0 0 0 0 

phchp131v2 SZ 55 F African 
American 1.358904 0 0 0 0 

phchp131v3 SZ 56 F African 
American 1.112329 0 0 0 0 

phchp141v1 BP 47 F Caucasian 4.60274 0 0 0 0 

phchp141v2 BP 47 F Caucasian 4.336986 0 0 0 0 

phchp141v3 BP 47 F Caucasian 4.090411 0 0 0 0 

phchp156v1 BP 35 F Caucasian 1.778082 0 0 0 0 

phchp164v1 MDD 48 F Caucasian 3.906849 0 0 0 0 

phchp164v2 MDD 49 F Caucasian 3.578082 0 0 0 0 

phchp164v3 MDD 49 F Caucasian 3.309589 0 0 0 0 

phchp177v1 SZ 39 F Caucasian 3.912329 0 0 0 0 

phchp177v2 SZ 39 F Caucasian 3.613699 0 0 0 0 

phchp240v1 MDD 55 F Caucasian 3.252055 0 0 0 0 

phchp240v2 MDD 55 F Caucasian 2.641096 0 0 0 0 
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phchp240v3 MDD 56 F Caucasian 2.282192 0 0 0 0 

phchp254v1 MDD 49 F Caucasian 2.353425 0 0 0 0 

phchp254v2 MDD 49 F Caucasian 1.739726 0 0 0 0 

phchp254v3 MDD 50 F Caucasian 1.336986 0 0 0 0 

phchp258v1 BP 52 F Caucasian 2.863014 0 0 0 0 

phchp258v2 BP 52 F Caucasian 2.252055 0 0 0 0 

phchp291v1 BP 45 F Caucasian 2.468493 0 0 0 0 

phchp291v2 BP 46 F Caucasian 2.084932 0 0 0 0 

phchp291v3 BP 47 F Caucasian 0.391781 0 0 0 0 

phchp318v1 MDD 57 F Caucasian 2.369863 0 0 0 0 

phchp318v2 MDD 57 F Caucasian 0.660274 0 0 0 0 

phchp328v1 MDD 37 F Caucasian 1.30411 5 0 3.834034 0 

phchp328v2 MDD 38 F Caucasian 1.008219 4 0 3.967391 0 

phchp328v3 MDD 38 F Caucasian 0.613699 3 0 4.888393 0 

phchp330v1 BP 45 F Caucasian 1.2 0 0 0 0 

phchp332v1 SZA 47 F African 
American 0.871233 2 0 2.295597 0 

phchp332v2 SZA 48 F African 
American 0.619178 2 0 3.230088 0 

phchp332v3 SZA 48 F African 
American 0.561644 0 0 0 0 

phchp334v1 BP 50 F Caucasian 1.065753 2 0 1.876607 0 

phchp334v2 BP 50 F Caucasian 0.816438 2 0 2.449664 0 

phchp334v3 BP 51 F Caucasian 0.534247 0 0 0 0 

phchp338v1 BP 51 F Caucasian 0.89863 0 0 0 0 

phchp338v2 BP 51 F Caucasian 0.556164 0 0 0 0 

phchp340v1 MDD 51 F Caucasian 0.923288 0 0 0 0 

phchp340v2 MDD 51 F Caucasian 0.627397 0 0 0 0 

phchp353v1 MDD 45 F Caucasian 0.29863 0 0 0 0 

phchp355v1 MDD 50 F Caucasian 0.539726 0 0 0 0 
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Table S2. Top candidate biomarker genes -evidence for involvement in suicidality. 
The top 49 genes (50 probesets) from validation (Bonferroni significant), as well as 65 genes that were top scoring in both discovery 
(internal score of 4) and prioritization (CFG score of 6 and above) but were non Bonferroni validated.  Underlined gene symbol 
means co-directionality of the exact same probeset  with  biomarkers findings from our previous work in males (Niculescu et al. 
2015)2. 82 out of 115 probesets were co-directional (71%).  Italic- nominally significant. Bold p-value is Bonferroni significant 
after validation in suicide completers.  
 

Gene Symbol/Gene 
Name Probesets 

Discovery 
(Change) 
Method/ 

Score 

Prior 
human 
genetic 

evidence 

Prior human Brain 
expression evidence 

Prior 
human 

peripheral 
expression 
evidence 

Prioritizati
on Total 

CFG Score 
For 

Suicide 

Validation 
ANOVA 
p-value 

Validated Biomarkers (Bonferroni) (49 genes, 50 probesets) 

BCL2 
 B-cell 

CLL/Lymphoma 2 
203684_s_at (D) 

DE/2 
Linkage 

3 
(D) 

PFC 4 
(D)  

Blood5 9 3.95E-06 

GSK3B 
 glycogen synthase 

kinase 3 beta 
226183_at (D) 

DE/1 Suicide 6 
(D) 

PFC 7  8 
 

(I)  
Blood5 9 2.26E-05 

ALDH3A2 
 aldehyde 

dehydrogenase 3 
family, member A2 

202053_s_at (D) 
DE/2  

(I) 
BA4, BA44, THALAMUS 9 

 

(D)  
Blood5 8 1.62E-06 

AP1S2 
 adaptor-related 

protein complex 1, 
sigma 2 subunit 

203299_s_at (D) 
DE/1 

Linkage 
 

10 

(I) 
BA 8/9  ; 

(D)  BA 44, BA 11 
Suicide 10 

(D)  
Blood5 8 2.52E-05 

CAT 
 catalase 

238363_at 
(D) 

DE/2 
  

 
(D) 

BA47 11 

(I)  
Blood5 8 5.04E-07 

JUN 
 jun proto-
oncogene 

201466_s_at 
201465_s_at  

(I) 
DE/2 
DE/1   

 
 

(D) 
HIP 12 

(I)  
Blood5 

8 
7 

1.14E-11 
1.72E-14 

 

C18orf54 
 chromosome 18 

open reading frame 
54 

244324_at (D) 
DE/1  

(D) 
HIP 12 

(I)  
Blood5 7 2.79E-06 

LINC00342 
 long intergenic 

non-protein coding 
RNA 342 

1560661_x_at (D) 
DE/2 

Linkage 
13 (D) DLFPC 14  7 1.67E-06 

MOB3B 
 MOB kinase 
activator 3B 

229568_at 
 

 (D) 
DE/1 

 
(I) 

ACC 14 
(I)  

Blood5 7 4.69E-06 
 

NDRG1 
 N-myc 

downstream 
regulated 1 

200632_s_at (I) 
DE/1  

 
(I) 

NAC 14 

(I)  
Blood5 7 3.07E-07 

PER1 
 period circadian 

clock 1 
202861_at (I) 

DE/1  
(D) 

DLFPC 14 
(D)  

Blood5 7 5.32E-12 

RAPH1 
 Ras association 

(RalGDS 
1552482_at (I) 

DE/1  
(I) 

BA11 15 
(I)  

Blood5 7 7.44E-10 

SPON1 
 spondin 1, 

extracellular matrix 
protein 

 
213993_at 

 

 
(I) 

DE/1 
 

 

(D) 
PFC 16 

(I) 
DLFPC 14 

 

(I)  
Blood5 7 1.02E-05 

 

FOXP1 
 forkhead box P1 223937_at (I) 

DE/4   
(D)  

Blood5 6 7.03E-07 

HAVCR2 
 hepatitis A virus 

cellular receptor 2 
1555629_at (I) 

DE/4   
(D)  

Blood5 6 1.69E-12 

PIP5K1B 
phosphatidylinosito

l-4-phosphate 5-
205632_s_at (D) 

DE/4   
(I)  

Blood5 6 1.83E-05 
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kinase, type I, beta 

ARHGAP15 
 Rho GTPase 

activating protein 
15 

1561489_at 
 

(I) 
DE/1 

 Suicide 13  
(I)  

Blood5 5 
3.05E-06 

 

GJA1 
 gap junction 

protein, alpha 1, 
43kDa 

201667_at (I) 
DE/1  

(D) 
HIP 12 

PFC 16 17  5 1.96E-06 

HES1 
 hes family bHLH 

transcription factor 
1 

203394_s_at (I) 
AP/1  

(D) 
DLPFC, AMY 

18 
 

 5 7.65E-10 

HTRA1 
 HtrA serine 
peptidase 1 

201185_at (I) 
AP/1  

(I) 
NAC 14  5 3.17E-07 

PRCP 
 

prolylcarboxypeptid
ase (angiotensinase 

C) 

242636_at (D) 
DE/1  

(D) 
HIP 12  5 2.36E-08 

TIMP1 
 TIMP 

metallopeptidase 
inhibitor 1 

201666_at (I) 
DE/1  

(I) 
HIP 19 

 
(D) 

PFC 16 

 5 7.00E-07 

CD200R1 
 CD200 receptor 1 1553395_a_at (D) 

DE/2   
(D)  

Blood5 4 1.45E-05 

CD84 
 CD84 molecule 

 
230391_at 

 

(D) 
DE/2 

  
(D)  

Blood5 4 1.74E-05 

CEP44 
 centrosomal 

protein 44kDa 

231850_x_at 
 

(D) 
DE/4 

    4 6.71E-08 

CROT 
 carnitine O-

octanoyltransferase 
231102_at (D) 

DE/2   
(I)  

Blood5 4 7.62E-06 

DCAF5 
 DDB1 and CUL4 

associated factor 5 

224696_s_at 
 

(D) 
DE/2 

   
(I)  

Blood5 4 1.37E-05 

DTWD2 
 DTW domain 
containing 2 

231277_x_at (D) 
DE/2   

(I)  
Blood5 4 1.87E-09 

EPB41L5 
 erythrocyte 

membrane protein 
band 4.1 like 5 

229292_at (I) 
DE/1 

Linkage 
20  

(I) Blood 
5 4 4.58E-14 

 

ERP27 
 endoplasmic 

reticulum protein 
27 

227450_at (D) 
DE/2   

(D) Blood 
5 4 9.54E-08 

FAM173B 
 family with 

sequence similarity 
173, member B 

225670_at 
 

(D) 
DE/2 

   
 (D)  

Blood5 4 2.25E-05 

GANC 
 glucosidase, alpha; 

neutral C 

235714_at 
(D) 

DE/2 
  

(I)  
Blood5 4 

1.40E-08 

GTF3C2 
 general 

transcription factor 
IIIC, polypeptide 2, 

beta 110kDa 

210620_s_at 
(D) 

DE/2 
  

(D) 
 Blood5 4 1.68E-07 

 

IL1R1 
 interleukin 1 

receptor, type I 
215561_s_at (I) 

AP/1 
Linkage 

13  
(D)  

Blood5 4 5.47E-08 

INO80D 227924_at (D) 
  (D)  4 6.58E-06 
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 INO80 complex 
subunit D 

 DE/2 
 

Blood5 

INPP4A 
 inositol 

polyphosphate-4-
phosphatase, type 

I, 107kDa 

235695_at (D) 
DE/1 

Linkage 
13  

(D)  
Blood5 4 1.79E-05 

ITLN1 
 intelectin 1 

(galactofuranose 
binding) 

223597_at 
 

(I) 
DE/2 

  (I)  
Blood5 

4 6.69E-07 

JRK 
 Jrk homolog 

(mouse) 
37872_at (D) 

AP/2   
(D)  

Blood5 4 4.25E-06 

KCTD5 
 potassium channel 

tetramerization 
domain containing 

5 

218474_s_at (D) 
DE/2   

(D)  
Blood5 4 2.05E-07 

KIR2DL4 
 killer cell 

immunoglobulin-
like receptor, two 

domains, long 
cytoplasmic tail, 4 

208426_x_at 
 

(I) 
DE/2 

   
(D)  

Blood5 4 1.61E-11 

METTL15 
methyltransferase 

like 15 

238773_at 
 

(D) 
DE/2 

   
(D)  

Blood5 4 2.16E-06 
 

NUDT10 
 nudix (nucleoside 
diphosphate linked 

moiety X)-type 
motif 10 

241596_at (I) 
DE/2   

(D)  
Blood5 4 7.99E-07 

PDXDC1 
 pyridoxal-
dependent 

decarboxylase 
domain containing 

1 

 
1560013_at 

 

 
(I) 

DE/2 
 

  
(I)  

Blood5 4 1.03E-05 

PIK3C3 
phosphatidylinosito
l 3-kinase, catalytic 

subunit type 3 

232086_at 
 

(D) 
DE/1 

 

Suicide, 
Antidepres

sants 21  
(I) 

Blood5 4 3.14E-08 
 

RBM48 
 RNA binding motif 

protein 48 

 
232661_s_at 

 

(D) 
DE/2 

   
(I) 

Blood5 4 7.89E-07 
 

SMARCA2 
SWI/SNF Related, 
Matrix Associated, 
Actin Dependent 

Regulator of 
Chromatin, 

Subfamily A, 
Member 2  

 
206543_at 

 

 
(D) 

DE/1 
 

Linkage 
3  

(D)  
Blood5 4 

2.46E-05 

 

UCHL5 
 ubiquitin carboxyl-
terminal hydrolase 

L5 

1570145_at 
 

(D) 
DE/2 

   
(I)  

Blood5 4 9.05E-11 

VPS53 
 vacuolar protein 

sorting 53 homolog 
(S. cerevisiae) 

235882_at 
 

(D) 
DE/2 

   
(I)  

Blood5 4 3.41E-09 

ZNF302 
 zinc finger protein 

302 

228392_at 
 

(D) 
DE/2 

  
(D)  

Blood5 4 7.64E-06 
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Top Discovery and Prioritization Biomarkers(Non Bonferroni Validated, 65 genes) 

CLTA 
 clathrin, light chain A 

216296_at 
 

(I) 
DE/4 

  
(I) 

PFC 22 
(I)  

Blood5 10  

FAM214A 
 family with 

sequence similarity 
214, member A 

236237_at 

 

(I) 
DE/4 

 

 
(I) 

ACC 14 
(I)  

Blood5 
10  

HSPD1 
 heat shock 60kDa 

protein 1 
(chaperonin) 

241716_at (I) 
DE/4  

(I) 
AMY 23 

(D)  
Blood5 10 0.021922 

ZMYND8 
 zinc finger, MYND-
type containing 8 

214795_at 
 

(I) 
AP/4 

  
(I) 

ACC 14 
(I)  

Blood5 10  

AK2 
 adenylate kinase 2 212172_at (I) 

AP/4 Suicide 24  
(D)  

Blood5 8  

CAPZA2 
 capping protein 
(actin filament) 

muscle Z-line, alpha 2 

201238_s_at 
 

(D) 
DE/4 

  
(I) 

PFC 23  8 0.116785 

LRRC8B 
 leucine rich repeat 
containing 8 family, 

member B 

212976_at 
 

(D) 
DE/4 

  
(I) 

PFC 15  8 0.231881 

PPM1B 
 protein 

phosphatase, Mg2+ 
209296_at (D) 

DE/4  
(I) 

NAC 14  8 0.002299 

ACTR3 
 ARP3 actin-related 
protein 3 homolog 

(yeast) 

213102_at 
 

(D) 
DE/4 

 
Linkage 

20  
(I)  

Blood5 7 0.0045239 
 

AFF3 
 AF4/FMR2 family, 

member 3 

244696_at 
 

(I) 
AP/4 

 
Linkage 

13  
(D)  

Blood5 7  

MRPS5 
 mitochondrial 

ribosomal protein S5 

 

237560_at 
 

 
(I) 

AP/4 

Linkage 
3 

{Willour, 
2007 

#37863} 

 
(D)  

Blood5 7  

SH2D1A 
 SH2 domain 

containing 1A 

211211_x_at 
 

(D) 
DE/4 

 

Linkage 
9 

{Zubenko, 
2004 

#37861} 

 
(D)  

Blood5 7  

AKT3 
 v-akt murine 

thymoma viral 
oncogene homolog 3 

240568_at 
(I) 

AP/4 
  

(D)  
Blood5 

 
6 
  

ALG13 
 ALG13, UDP-N-

acetylglucosaminyltr
ansferase subunit 

205584_at 
 

(D) 
DE/4 

   
(I)  

Blood5 6 0.046957 

ARHGAP35 
 Rho GTPase 

activating protein 35 

229397_s_at 
 

(D) 
DE/4 

   
 (D) 

Blood5 6 

0.00160014 
 
 

ARID4B 
 AT rich interactive 
domain 4B (RBP1-

like) 

221230_s_at (D) 
DE/4   

(I)  
Blood5 6  

ASPH 
 aspartate beta-

  (I) 
  

(I)  
Blood5 6 0.01087 
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hydroxylase 242037_at 
 

DE/4 
 

ATXN1 
 ataxin 1 

1565804_at 
 

(I) 
DE/4 

   
(I)  

Blood5 6  

BRE 
 Brain and 

reproductive organ-
expressed (TNFRSF1A 

modulator) 

 
1556817_a_a

t 

 
(I) 

AP/4   
(I)  

Blood5 6  

CHMP2B 
 charged 

multivesicular body 
protein 2B 

202538_s_at 
 

(D) 
DE/4 

   
(I)  

Blood5 6 0.022703 

CLPB 
 ClpB caseinolytic 

peptidase B homolog 
(E. coli) 

1566581_at 
(I) 

AP/4 
   

(D)  
Blood5 6 0.025268 

CSNK1A1 
 casein kinase 1, 

alpha 1 

235464_at 
 

(D) 
DE/4 

   
(D)  

Blood5 6  

DPCD 
 deleted in primary 

ciliary dyskinesia 
homolog (mouse) 

226009_at 
 

(I) 
DE/4 

   
(D)  

Blood5 6  

ECSIT 
 ECSIT signalling 

integrator 
218225_at (I) 

DE/4   
(D)  

Blood5 6  

ENTPD1 
 ectonucleoside 

triphosphate 
diphosphohydrolase 

1 

 
243111_at 

 
(I) 

AP/4   
(I)  

Blood5 6  

EPHB4 
 EPH receptor B4 

202894_at 
(I) 

DE/4 
   

(D)  
Blood5 6  

ETNK1 
 ethanolamine kinase 

1 
224453_s_at 

(D) 
AP/4 

 
  (D)  

Blood5 
6  

FANCI 
 Fanconi anemia, 
complementation 

group I 

213008_at (I) 
DE/4   

(I)  
Blood5 6 0.000897 

FBXL3 
 F-box and leucine-

rich repeat protein 3 
225132_at (D) 

DE/4   
(I)  

Blood5 6 0.00127 

GTF3C3 
 general transcription 

factor IIIC, 
polypeptide 3, 

102kDa 

 
1555439_at 

 
(I) 

AP/4   (I)  
Blood5 6 NC 

HERC4 
 HECT and RLD 

domain containing E3 
ubiquitin protein 

ligase 4 

225988_at 
 

(D) 
DE/4 

   
(D)  

Blood5 6 0.042192 
 

ITIH5 
 inter-alpha-trypsin 

inhibitor heavy chain 
family, member 5 

1553243_at (I) 
AP/4   

(I)  
Blood5 6  

JMJD1C 
 jumonji domain 

containing 1C 

221763_at 
 

(D) 
DE/4 

   
(I)  

Blood5 6 0.191525 
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KLHL28 
 kelch-like family 

member 28 

 
220374_at 

 
(I) 

AP/4   
(I)  

Blood5 6  

LARP4 
 La ribonucleoprotein 

domain family, 
member 4 

214155_s_at 
 

(D) 
DE/4 

   
(D) 

Blood5 6 0.014911 

MBNL1 
 muscleblind-like 

splicing regulator 1 

201153_s_at 
 

(D) 
DE/4 

   
(D)  

Blood5 6 0.009769 
 

MEX3C 
 mex-3 RNA binding 

family member C 

222567_s_at 
 

(D) 
DE/4 

   
(D)  

Blood5 6 0.00603 

MR1 
 major 

histocompatibility 
complex, class I-

related 

207566_at 
 

(I) 
DE/4   

(D)  
Blood5 6  

NUDT6 
 nudix (nucleoside 
diphosphate linked 

moiety X)-type motif 
6 

220183_s_at (D) 
AP/4   

(D)  
Blood5 6  

PHC3 
 polyhomeotic 

homolog 3 
(Drosophila) 

1552644_a_a
t 
 

(D) 
DE/4 

(I) 
DE/1 

  
(I)  

Blood5 6  

PIAS1 
 protein inhibitor of 

activated STAT, 1 

1558418_at 
 

(I) 
DE/4   

(I)  
Blood5 6  

PPHLN1 
 periphilin 1 234459_at (I) 

DE/4   
(I)  

Blood5 6  
PRDX3 

 peroxiredoxin 3 201619_at (D) 
DE/4   

(I)  
Blood5 6 0.000225 

PVT1 
 Pvt1 oncogene (non-

protein coding) 

1562153_a_a
t 
 

(D) 
DE/4 

   
(D)  

Blood5 6 0.000433 
 

RAB22A 
 RAB22A, member 

RAS oncogene family 

218360_at 
 

(D) 
DE/4 

   
(I)  

Blood5 6  

RDH13 
 retinol 

dehydrogenase 13 
(all-trans/9-cis) 

 
225449_at 

 
(I) 

AP/4   
(D)  

Blood5 6  

SBNO1 
 strawberry notch 

homolog 1 
(Drosophila) 

229528_at 
 

(I) 
DE/4   

(I)  
Blood5 6  

SLC35B3 
 solute carrier family 

35 (adenosine 3'-
phospho 5'-

phosphosulfate 
transporter), 
member B3 

231003_at (D) 
DE/4   (I)  

Blood5 6 3.34E-05 

SNRNP27 
 small nuclear 

ribonucleoprotein 
27kDa (U4 

212440_at 
 

(D) 
DE/4 

   
(D)  

Blood5 6  

SNX27 244349_at (I)   (I)  6  
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 sorting nexin family 
member 27 

AP/4 Blood5 

SSBP2 
 single-stranded DNA 

binding protein 2 

1557814_a_a
t 

 
(I) 

AP/4   
(I)  

Blood5 6  

STRN 
 striatin, calmodulin 

binding protein 

 
1569813_at 

 
(I) 

AP/4   
(I)  

Blood5 6  

TTC7A 
 tetratricopeptide 
repeat domain 7A 

224924_at 
 

(I) 
DE/4 

   
(I)  

Blood5 6  

UIMC1 
 ubiquitin interaction 

motif containing 1 
233596_at (I) 

DE/4   
(I)  

Blood5 6  

USP6NL 
 USP6 N-terminal like 204761_at (D) 

DE/4   
(D)  

Blood5 6 0.007614 

WAC 
 WW domain 

containing adaptor 
with coiled-coil 

230154_at 
 

(D) 
DE/4 

    (D)  
Blood5 6 8.53E-05  

WAPAL 
 wings apart-like 

homolog (Drosophila) 

212267_at 
 

(D) 
DE/4 

   
(D)  

Blood5 6 0.002521 

ZBP1 
 Z-DNA binding 

protein 1 
208087_s_at (I) 

DE/4   
(D)  

Blood5 6  

ZFAND5 
 zinc finger, AN1-type 

domain 5 
210275_s_at (D) 

DE/4   
(D)  

Blood5 6 0.042362 

ZNF117 
 zinc finger protein 

117 

207605_x_at 
 

(D) 
DE/4 

   
(D)  

Blood5 6  

ZNF141 
 zinc finger protein 

141 
206931_at (D) 

DE/4   
(D)  

Blood5 6  

ZNF548 
 zinc finger protein 

548 

1553718_at 
 

(D) 
DE/4 

   
(D)  

Blood5 6 0.000461 

ZNF596 
 zinc finger protein 

596 
240324_at 

(I) 
AP/4 

   
(I)  

Blood5 6  

AP3S2 
 adaptor-related 

protein complex 3, 
sigma 2 subunit 

213215_at (I) 
DE/4    4  

SSR1 
 signal sequence 
receptor, alpha 

200890_s_at (D) 
DE/4    4 0.000923 
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Table S3. Top candidate biomarker genes – evidence for involvement in other psychiatric and 
non-psychiatric disorders (aging, pain). Underlined gene symbol means concordant  with findings from our previous 
mood  and psychosis biomarker studies (mood-opposite direction, psychosis-same direction). Alc- alcoholism; BP- Bipolar; SZ-
schizophrenia. ASD- Autism spectrum disorders; ALZ- Alzheimer; PTSD-Post Traumatic Stress Disorder. 

Gene 
Symbol/Gene 

Name 
Probesets 

Disc
over

y 
(Cha
nge) 
Met
hod/ 
Scor

e 

Prioriti
zation 
CFG 

Score 
For 

Suicid
e 

Validation 
ANOVA 
p-value 

Circadian 
clock 

function 

Prior human 
genetic 

evidence 

Prior human Brain 
expression evidence 

Prior human 
peripheral 
expression 
evidence 

 
CFG 

Score 
For 

Other  
Disorde

rs 

Validated Biomarkers (Bonferroni) (49 genes, 50 probesets) 

BCL2 
 B-cell 

CLL/Lymphoma 2 
203684_s_at (D) 

DE/2 9.00 3.95E-06  

Anxiety25 
 

BP26 27 
 

BP, SZ28 

(I) 
Aging 
PFC  29 

 
(D) 
BP 

FC 30 
 

PTSD 
DLPFC 31 

 
 

(I) 
Alc 

Blood  32 
 

Pain 
Vertebral disc 33 

 
(D) 
BP 

lymphoblast  26 
 

Mood stabilizers 
Blood  34 

8.00 

GSK3B 
 glycogen 

synthase kinase 
3 beta 

226183_at (D) 
DE/1 9.00 2.26E-05 

Clock 
Immediate 

Input 

 

BP  35  36 37 
 

MDD 
38 
 

Mood 
Stabilizers 3

9 
 

MDD40 41 
 

SZ42 43 

(D) 
Alc 

HTH 44 
 

BP 
Brain 45 

DLPFC  46 47 
ACC 46 

 
SZ 

HIP 48 49 
DLPFC 50  43 
Thalamus51 

Temporal Cortex 52 
 

(I) 
MDD 

HTH (I) 44 
 

ACC, DLPFC 46 
 
 

 
(I) 

MDD 
Fibroblast53 

 
(D) 

Mood stabilizers 
platelets54 

 
Mild Cognitive 

Impairment 
Blood 55 

 
BP 

platelets54 
 

8.00 

ALDH3A2 
 aldehyde 

dehydrogenase 3 
family, member 

A2 

202053_s_at (D) 
DE/2 8.00 1.62E-06   

 
(D) 
BP 

Brain 45 
 4.00 

AP1S2 
 adaptor-related 
protein complex 

1, sigma 2 
subunit 

203299_s_at (D) 
DE/1 8.00 2.52E-05   

(D) 
BP   

Brain 45 56 
 

SZ,SZA 
DLPFC  57 

 4.00 

CAT 
 catalase 238363_at (D) 

DE/2 8.00 5.04E-07   

(I) 
Mood Disorders NOS 

ACC 58 
 

PTSD 
DLPFC BA46 

31 
 

BP 
ACC ,DLPFC46 

 

(I) 
BP 

Plasma 59 
 

(D) 
SZ 

Red Blood Cell60 
 

SZ 
Fibroblasts61 

 

8.00 
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(D) 
MDD 

BA47 11; 
 

ACC,DLPFC 46 

JUN 
 jun proto-
oncogene 

201466_s_at 
201465_s_at,  

(I) 
DE/2 
DE/1   

 

8.0 
7.0 

 

1.14E-11 
1.72E-14   

(I) 
MDD 

BA2  62 
AMY 63 

 
SZ 

cerebellar vermis   64 
middle temporal 

gyrus 65 
thalamus 

66 

SZ 
Fibroblasts 

67 
 

Neurological Pain 
vertebral disc 

33 
 
 

(D) 
Stress, Lithium 

Leukocytes 
68 
 

SZ 
Blood 67 

 
 

6.00 

C18orf54 
 chromosome 18 

open reading 
frame 54 

244324_at (D) 
DE/1 7.00 2.79E-06     0.00 

LINC00342 
 long intergenic 

non-protein 
coding RNA 342 

1560661_x_at (D) 
DE/2 7.00 1.67E-06     0.00 

MOB3B 
 MOB kinase 
activator 3B 

229568_at (D) 
DE/1 7.00 4.69E-06     0.00 

NDRG1 
 N-myc 

downstream 
regulated 1 

200632_s_at (I) 
DE/1 7.00 3.07E-07 

Clock 
Distant 
Output 

 
 

 
 

SZ 
ACC (BA 24) 

56 
 

(I) 
SZ 

APFC 69 
 
 

 4.00 

PER1 
 period circadian 

clock 1 
202861_at (I) 

DE/1 7.00 5.32E-12 
 Clock 
Core 

 

ASD 
70 
 

Depression 
71 
 

Stress/Alc 7
2 

(Unspecified) 
MDD 

DLPFC 73 
 

(D) 
BP 

ACC 44 
 

(I) 
SZ 

middle temporal 
gyrus 65 

(I) 
BP 

buccal mucosa 
cells 74 

 
MDD 

leukocytes 
75 
 

(D) 
SZ 

Lymphocyte 
76 
 

Alc 
Blood 77 

 

8.00 

RAPH1 
 Ras association 

(RalGDS 
1552482_at (I) 

DE/1 7.00 7.44E-10 

Clock 
Distant 
Output 

 

 

 
(I) 

MDD 
BA11  15 

 
(D) 

MDD 
Blood  78 79 

 
(I) 

(MDD) 
Fibroblast 

53 

6.00 

SPON1 213994_s_at (D) 7.00 1.02E-05    (I) 8.00 
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 spondin 1, 
extracellular 

matrix protein 

DE/1   
Antidepres

sants 80 

(D) 
SZ 

PFC (BA 46/10) 
16 

PTSD 
Blood  81 

 
(D) 
SZ 

Fibroblasts 
61 

FOXP1 
 forkhead box P1 223937_at (I) 

DE/4 6.00 7.03E-07 

Clock 
Immediate 

 Output 
 

Alc 
82 
 

ASD 
83 
 

BP 
84 
 

SZ 
85 

(I) 
MDD 

AMY and cingulate 
cortex 86 

 
 

(D) 
Circadian 

Abnormalities 
Blood 87 

8.00 

HAVCR2 
 hepatitis A virus 
cellular receptor 

2 

1555629_at (I) 
DE/4 6.00 1.69E-12    

(I) 
PTSD 

Blood  81 
 

SZ 
Blood 88 

2.00 

PIP5K1B 
 

phosphatidylinos
itol-4-phosphate 
5-kinase, type I, 

beta 

205632_s_at (D) 
DE/4 6.00 1.83E-05   

(D) 
BP 

Brain 45 

(D) 
Delusions 
Blood  89 

 
(I) 
SZ 

Fibroblasts 61 

6.00 

ARHGAP15 
 Rho GTPase 

activating 
protein 15 

1561489_at (I) 
DE/1 5.00 

3.05E-06 

 
 

ASD 
90 
 

SZ 
85 
 

Alcohol 
13 

  2.00 

GJA1 
 gap junction 

protein, alpha 1, 
43kDa 

201667_at (I) 
DE/1 5.00 1.96E-06   

(I) 
Alc 

PFC  91 
frontal 

 
(D) 
Alc 

92 
 

MDD 
Locus coeruleus 

foreBrain 
93 
 

SZ 
PFC BA 46/10) 

16 
supragenual (BA24) 

ACC 94 

(I) 
Neurological Pain 

vertebral disc 
33 

6.00 

HES1 
 hes family bHLH 

transcription 
factor 1 

203394_s_at (I) 
AP/1 5.00 7.65E-10     0.00 

HTRA1 
 HtrA serine 
peptidase 1 

201185_at (I) 
AP/1 5.00 3.17E-07 

Clock 
Distant 
Output  

 
(D) 
Alc 

FC  92 

(I) 
SZ 

Blood 95 

6.00 
 

PRCP 
prolylcarboxype

ptidase 
(angiotensinase 

C) 

242636_at (D) 
DE/1 5.00 2.36E-08    

(D) 
Chronic Stress 

Blood monocytes 96 
 

SZ 
Fibroblasts 

61 
Blood 88 

2.00 
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TIMP1 
 TIMP 

metallopeptidas
e inhibitor 1 

201666_at (I) 
DE/1 5.00 7.00E-07   

(I) 
Alc 

HIP 97 
 

ASD 
cerebral cortex  98 

 
BP 

FC 99 
 

MDD 
HIP 19 

DLPFC  100 
 

(D) 
BP 

PFC BA 46/10 
16 
 

BP,MDD 
Pituitary 101 

 
Alc 

Frontal, motor 
cortex  102 

(I) 
SZ 

Plasma (I) 103 
 

(Unspecified) 
Antidepressants 

BLOOD   104 

6.00 

CD200R1 
 CD200 receptor 

1 
1553395_a_at (D) 

DE/2 4.00 1.45E-05  ASD, SZ 105   2.00 

CD84 
 CD84 molecule 230391_at (D) 

DE/2 4.00 1.74E-05    

(I) 
BP 

Whole Blood 
106 

 
Psychosis 
Blood 89 

 
(D) 
ALZ 

BMC  107 
 

Circadian 
abnormalities 
Whole Blood 

87 

2.00 

CEP44 
 centrosomal 

protein 44kDa 
231850_x_at (D) 

DE/4 4.00 6.71E-08     0.00 

CROT 
 carnitine O-

octanoyltransfer
ase 

231102_at (D) 
DE/2 4.00 7.62E-06 

Clock 
Distant 
Output 

 

Personality 
Disorder, 

Cynicism 108 
  2.00 

DCAF5 
 DDB1 and CUL4 
associated factor 

5 

224696_s_at (D) 
DE/2 4.00 1.37E-05    

(D) 
Circadian 

abnormalities 
Whole Blood 

87 

2.00 

DTWD2 
 DTW domain 
containing 2 

231277_x_at (D) 
DE/2 4.00 1.87E-09     0.00 

EPB41L5 
 erythrocyte 
membrane 

protein band 4.1 
like 5 

229292_at (I) 
DE/1 4.00 4.58E-14     0.00 

ERP27 
 endoplasmic 

reticulum 
protein 27 

227450_at (D) 
DE/2 4.00 9.54E-08     0.00 

FAM173B 
 family with 
sequence 

similarity 173, 

225670_at (D) 
DE/2 4.00 2.25E-05   

(D) 
Alcohol 

97  4.00 
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member B 

GANC 
 glucosidase, 

alpha; neutral C 
235714_at (D) 

DE/2 4.00 
1.40E-08 

 ASD 
109   2.00 

GTF3C2 
 general 

transcription 
factor IIIC, 

polypeptide 2, 
beta 110kDa 

210620_s_at (D) 
DE/2 4.00 1.68E-07   

(D) 
MDD 

AMY,  cingulate cortex 
86 

 4.00 

IL1R1 
 interleukin 1 

receptor, type I 
215561_s_at (I) 

AP/1 4.00 5.47E-08  Alc 
110 

(I) 
Alcohol 
NAC 111 
HIP 97 

 
BP 

Brain 45 
FC 112 

 
(D) 

BP,SZ 
DLPFC 113 

 
SZ 

PFC  114 
 

SZ 
PFC 114 

 

(I) 
SZ 

serum 115 
116 

 
Psychological 

Distress 
peripheral Blood 

cells 117 
 

Stress 
Leukocyte 118 

 
 MDD 

119 
 

(D) 
SZ 

PBMC 120 
 
 
 
 

7.00 

INO80D 
 INO80 complex 

subunit D 
227924_at (D) 

DE/2 4.00 6.58E-06     0.00 

INPP4A 
 inositol 

polyphosphate-
4-phosphatase, 
type I, 107kDa 

235695_at (D) 
DE/1 4.00 1.79E-05  

Bipolar 
Psychosis 

121 

(D) 
BP 

Brain 45 
 

(I) 
SZ 

supragenual (BA24) 
ACC 

94 

(D) 
BP 

Lymphocyte 
122 

8.00 

ITLN1 
 intelectin 1 

(galactofuranose 
binding) 

223597_at (I) 
DE/2 4.00 6.69E-07     0.00 

JRK 
 Jrk homolog 

(mouse) 
37872_at (D) 

AP/2 4.00 4.25E-06     0.00 

KCTD5 
 potassium 

channel 
tetramerization 

domain 
containing 5 

218474_s_at (D) 
DE/2 4.00 2.05E-07    

(I) 
BP 

Whole Blood 106 
2.00 

KIR2DL4 
 killer cell 

immunoglobulin-
like receptor, 
two domains, 

long cytoplasmic 
tail, 4 

208426_x_at (I) 
DE/2 4.00 1.61E-11    

 
SZ 

Blood  95 
 

(I) 
Delusions 
Blood 89 

 
Tourette Syndrome 

Blood 123 
 
 
 

2.00 

METTL15 
 

methyltransferas
238773_at (D) 

DE/2 4.00 2.16E-06     0.00 
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e like 15 

NUDT10 
 nudix 

(nucleoside 
diphosphate 

linked moiety X)-
type motif 10 

241596_at (I) 
DE/2 4.00 7.99E-07    

(I) 
Hallucinations 

Blood 89 
 

2.00 

PDXDC1 
 pyridoxal-
dependent 

decarboxylase 
domain 

containing 1 

1560013_at (I) 
DE/2 4.00 1.03E-05  SZ 

124   2.00 

PIK3C3 
phosphatidylinos

itol 3-kinase, 
catalytic subunit 

type 3 

232086_at (D) 
DE/1 4.00 3.14E-08  

BP 
125 

 
SZ 
126 

 
BP, SZ 
28, 127 

(D) 
MDD 

AMY, ACC 
86 

 6.00 

RBM48 
 RNA binding 

motif protein 48 
232661_s_at (D) 

DE/2 4.00 7.89E-07     0.00 

SMARCA2 
 SWI/SNF 

Related, Matrix 
Associated, Actin 

Dependent 
Regulator of 
Chromatin, 

Subfamily A, 
Member 2 

206543_at (D) 
DE/1 4.00 

2.46E-05 

 
 

SZ 
128 
129 
 130 

 
Aging 

131 
 

CNV 
SZ 
132 

(I) 
BP 

FC 99 
 

SZ 
DLPFC 133 

DLPFC BA46 134 
 

(D) 
SZ 

PFC129 
 

BP 
Brain 45 

 
 
 

(I) 
BP 

Lymphocyte 
76 

8.00 

UCHL5 
 ubiquitin 
carboxyl-
terminal 

hydrolase L5 

1570145_at (D) 
DE/2 4.00 9.05E-11   

(D) 
BP 

Brain 45 

(I) 
Antidepressants 

Blood 135 

5.00 
 

VPS53 
 vacuolar protein 

sorting 53 
homolog (S. 
cerevisiae) 

235882_at (D) 
DE/2 4.00 3.41E-09   

(D) 
BP 

Brain 45 

 
(I) 

MDD 
Fibroblast 

53 

6.00 

ZNF302 
 zinc finger 
protein 302 

228392_at (D) 
DE/2 4.00 7.64E-06   

(D) 
MDD 

AMY, cingulate cortex 
86 
 

(I) 
SZ 

DLPFC 136 

 4.00 

Top Discovery and Prioritization Biomarkers(Non Bonferroni Validated, 65 genes) 

CLTA 
 clathrin, light 

chain A 
216296_at (I) 

DE/4 10.00    

(I) 
MDD 
FC 22 

 
(D) 
BP 

Brain 45 

(D) 
ALZ 

Blood 107 
6.00 

FAM214A 
 family with 
sequence 

similarity 214, 
member A 

236237_at (I) 
DE/4 10.00      0.00 
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HSPD1 
 heat shock 

60kDa protein 1 
(chaperonin) 

241716_at (I) 
DE/4 10.00 0.021922  SZ  137 

(D) 
Alc 

FC 92 
 

(I) 
BP 

parietal cortex 138 
 

MDD 
AMY and cingulate 

cortex 86 
 

PTSD 
DLPFC 31 

 

(I) 
Antidepressants 

Blood 135 
MNC 139 

 
(D) 

Circadian 
Abnormalities 

Blood 87 
 

SZ 
Blood 140 

 
Mood Disorder 

NOS 
Fetal Brain cultured 

in cortisol 
treatment 3weeks 

141 

8.00 

ZMYND8 
 zinc finger, 
MYND-type 
containing 8 

214795_at (I) 
AP/4 10.00    

(I) 
SZ 

DLPFC 136 
 4.00 

AK2 
 adenylate 

kinase 2 
212172_at (I) 

AP/4 8.00  

Clock 
Distant 
Output 

 
 

(D) 
BP,SZ 

PFC (BA46) 
142 

 4.00 

CAPZA2 
 capping protein 
(actin filament) 
muscle Z-line, 

alpha 2 

201238_s_at (D) 
DE/4 8.00 0.116785   

(D) 
BP 

ACC 56; 
Brain 45 

 
SZ 

Thalamus 
51 

(D) 
BP, MDD,SZ 

CSF  143 
 

PTSD 
Blood 81 

6.00 

LRRC8B 
 leucine rich 

repeat 
containing 8 

family, member 
B 

212976_at (D) 
DE/4 8.00 0.231881   

(D) 
BP 

Brain 45 
 

(I) 
MDD 

BA11  15 
 

SZ 
DPFC (BA 46) 134 

(D) 
Mood State 

Blood 144 
6.00 

PPM1B 
 protein 

phosphatase, 
Mg2+ 

209296_at (D) 
DE/4 8.00 0.002299 

Clock 
Immediat
e  Input 

 
 

(D) 
Alc 

FC 145  
4.00 

 

ACTR3 
 ARP3 actin-

related protein 3 
homolog (yeast) 

213102_at (D) 
DE/4 7.00 0.004524   

(I) 
BP 

ACC (BA 24)  56;  
Brain 

 
SZ 

ACC 
146 

 
(D) 
BP 
45 

PFC 147 
 

SZ,SZA 
DLPFC 57 

 
SZA 

APFC  69 

(I) 
BP 

Blood 106 
6.00 

AFF3 
 AF4/FMR2 

family, member 
3 

244696_at (I) 
AP/4 7.00   SZ 

85 

(D) 
BP 

Brain 45 

(I) 
BP 

Blood 106 
8.00 

MRPS5 
 mitochondrial 

ribosomal 
237560_at (I) 

AP/4 7.00    

(D) 
Alc 

HIP 97 

(I) 
PTSD 

Blood  81 

6.00 
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protein S5 

SH2D1A 
 SH2 domain 

containing 1A 
211211_x_at (D) 

DE/4 7.00    

(I) 
BP 

APFC 69 

(I) 
PTSD 

Blood  81 
 

Antidepressants 
Blood 135 

6.00 

AKT3 
 v-akt murine 

thymoma viral 
oncogene 
homolog 3 

240568_at (I) 
AP/4 6.00   

SZ 
148 
149  
137 

 
Longevity 150 

(D) 
BP 

Brain 45  6.00 

ALG13 
 ALG13, UDP-N-

acetylglucosamin
yltransferase 

subunit 

205584_at (D) 
DE/4 6.00 0.046957   

(D) 
BP 

Brain 45 

(I) 
BP 

Blood 106 
6.00 

ARHGAP35 
 Rho GTPase 

activating 
protein 35 

229397_s_at (D) 
DE/4 6.00 0.0016     0.00 

ARID4B 
 AT rich 

interactive 
domain 4B 
(RBP1-like) 

221230_s_at (D) 
DE/4 6.00      0.00 

ASPH 
 aspartate beta-

hydroxylase 
242037_at (I) 

DE/4 6.00 0.01087    

(I) 
MDD 

Blood 151 
2.00 

ATXN1 
 ataxin 1 1565804_at (I) 

DE/4 6.00   

 
ADHD 

152    
 

Alc 
82 
 

BP 
153 154 84 

 
SZ 

155 156 
126 153 42 

 
 

(D) 
Alc 

Frontal, motor cortex  
102 

(I) 
Mood State 

Blood 144 
 

Pain 
vertebral disc 

33 
 

Social Isolation 
leukocytes 

157 
 

(D) 
Delusions/ 

Hallucinations 
Blood  89 

 
Chronic Stress 

BLOOD monocytes 
96 
 
 

6.00 

BRE 
 Brain and 

reproductive 
organ-expressed 

(TNFRSF1A 
modulator) 

1556817_a_at (I) 
AP/4 6.00   

BP 
158 

 
Longevity 159 

(D) 
BP 

Brain 45 
 6.00 

CHMP2B 
 charged 

multivesicular 
body protein 2B 

202538_s_at (D) 
DE/4 6.00 0.022703   

(I) 
MDD 

AMY and cingulate 
cortex 86 

 4.00 

CLPB 
 ClpB caseinolytic 

peptidase B 
homolog (E. coli) 

1566581_at (I) 
AP/4 6.00 0.025268     0.00 

CSNK1A1 
 casein kinase 1, 

alpha 1 
235464_at (D) 

DE/4 6.00  

Clock 
Immedia

te  
Input 

 

 

(D) 
Alc 

temporal cortex    160 
 

(Unspecified) 
MDD 

thalamus  51 

 
(I) 

Mood stabilizers 
Human astrocyte-
derived cells U-87 

MG (I) 161 
 

(D) 

6.00 
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Mood State 
Blood 144 

 

DPCD 
 deleted in 

primary ciliary 
dyskinesia 
homolog 
(mouse) 

226009_at (I) 
DE/4 6.00    

(D) 
BP 

Brain 45 

(I) 
PTSD 

Blood 81 
 

(D) 
BP 

Whole Blood 
106 

6.00 

ECSIT 
 ECSIT signalling 

integrator 
218225_at (I) 

DE/4 6.00    

(D) 
BP 

Brain 45 

(I) 
BP 

Blood 106 
6.00 

ENTPD1 
 ectonucleoside 

triphosphate 
diphosphohydrol

ase 1 

243111_at (I) 
AP/4 6.00     

(I) 
SZ 

Blood mononuclear 
cells 

162 

2.00 

EPHB4 
 EPH receptor B4 202894_at (I) 

DE/4 6.00    

(I) 
BP 

DPFC (BA 46) 163 
 

SZ 
DLPFC (BA 46) 163 

 4.00 

ETNK1 
 ethanolamine 

kinase 1 
224453_s_at (D) 

AP/4 6.00    

(D) 
BP 

Brain 45 
 

(I) 
MDD 

AMY and cingulate 
cortex 86 

 4.00 

FANCI 
 Fanconi anemia, 
complementatio

n group I 

213008_at (I) 
DE/4 6.00 0.000897   

(D) 
MDD 

DLPFC  164 

(D) 
Delusions 
Blood 89 

6.00 

FBXL3 
 F-box and 

leucine-rich 
repeat protein 3 

225132_at (D) 
DE/4 6.00 0.00127 

Clock 
Immediat

e Input 
 

 

(D) 
Alc 

superior FC 
145 

 
(I) 
Alz 

Occipital lobe         165 

(I) 
BP 

Blood 106 
 

(D) 
SZ 

Fibroblasts 
61 

6.00 

FGFR1OP2 
 FGFR1 oncogene 

partner 2 
223262_s_at (D) 

DE/4 6.00    

(D) 
BP 

Brain 45 

(I) 
BP 

Blood 106 
6.00 

GTF3C3 
 general 

transcription 
factor IIIC, 

polypeptide 3, 
102kDa 

1555439_at (I) 
AP/4 6.00    

(I) 
SZ 

PFC 166 

(D) 
Circadian 

abnormalities 
Blood 87 

6.00 

HERC4 
 HECT and RLD 

domain 
containing E3 

ubiquitin protein 
ligase 4 

225988_at (D) 
DE/4 6.00 0.042192   

(D) 
Alc 

HIP 97 

(D) 
Delusions 
Blood 89 

 
(I) 
BP 

Blood 106 

6.00 

ITIH5 
 inter-alpha-

trypsin inhibitor 
heavy chain 

family, member 
5 

1553243_at (I) 
AP/4 6.00   

BP 
84 
 

 Alc 
167 

(D) 
BP 

Brain 45 

(I) 
PTSD 

Blood 81 
8.00 

JMJD1C 
 jumonji domain 

containing 1C 
221763_at (D) 

DE/4 6.00 0.191525  
Anxiety, BP  

168 
  

(I) 
BP 

Blood 106 
 

(D) 
PTSD 

Blood 81 

4.00 
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KLHL28 
 kelch-like family 

member 28 
220374_at 

(I) 
AP/4 

 
6.00    

(D) 
Alc 

HIP 97 

(I) 
BP 

Blood 106 

6.00 
 

LARP4 
 La 

ribonucleoprotei
n domain family, 

member 4 

214155_s_at (D) 
DE/4 6.00 0.014911    

(D) 
Mood State 

Blood 
144 

 
Circadian 

abnormalities  
Blood 87 

2.00 

MBNL1 
 muscleblind-like 
splicing regulator 

1 

201153_s_at (D) 
DE/4 6.00 0.009769  BP 

169 

(I) 
MDD 

AMY and cingulate 
cortex 86 

 
SZ 

DLPFC - BA 46 
170 

(D) 
BP 

Blood 106 
 

MDD 
Blood 

151 
 

(I) 
Longevity 

171 

8.00 

MEX3C 
 mex-3 RNA 

binding family 
member C 

222567_s_at (D) 
DE/4 6.00 0.00603    

(I) 
Alc 

Blood 32 
 

PTSD 
Blood 81 

 
(D) 
BP 

Blood 106 
 
 

2.00 

MIER1 
 mesoderm 

induction early 
response 1, 

transcriptional 
regulator 

225475_at (D) 
DE/4 6.00 0.031445     0.00 

MR1 
 major 

histocompatibilit
y complex, class 

I-related 

207566_at (I) 
DE/4 6.00      0.00 

NUDT6 
 nudix 

(nucleoside 
diphosphate 

linked moiety X)-
type motif 6 

220183_s_at (D) 
AP/4 6.00     

(I) 
SZ 

serum 172 
2.00 

PHC3 
 polyhomeotic 

homolog 3 
(Drosophila) 

1552644_a_at (D) 
DE/4 6.00      0.00 

PIAS1 
 protein inhibitor 

of activated 
STAT, 1 

1558418_at (I) 
DE/4 6.00  

Clock 
Distant 
Output 

 

 

 

(D) 
MS 

Subcortical,periventric
ular,medial subcortical 

white matter 173 

(D) 
Alc 

Blood 32 

6.00 
 

PPHLN1 
 periphilin 1 234459_at (I) 

DE/4 6.00     

(D) 
BP 

Whole Blood 
106 

2.00 

PRDX3 
 peroxiredoxin 3 201619_at (D) 

DE/4 6.00 0.000225   

(I) 
SZA 

APFC 69 
 

SZ 
PFC  174 

 
(D) 

(D) 
Chronic Stress 

Blood monocytes 96 
 

6.00 
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Alc 
Superior Frontal Gyrus 

175 
 

BP 
Brain 45 

 
MDD 

Pituitary 101 
 

BP, MDD 
APFC 69 

 
 
 
 

PVT1 
 Pvt1 oncogene 

(non-protein 
coding) 

1562153_a_at (D) 
DE/4 6.00 0.000433  

Psychosis 176 
 

SZ,BP 
177 

  2.00 

RAB22A 
 RAB22A, 

member RAS 
oncogene family 

218360_at (D) 
DE/4 6.00      0.00 

RDH13 
 retinol 

dehydrogenase 
13 (all-trans/9-

cis) 

225449_at (I) 
AP/4 6.00    

(D) 
PTSD 

DLPFC BA46 
31 

 4.00 

SBNO1 
 strawberry 

notch homolog 1 
(Drosophila) 

229528_at (I) 
DE/4 6.00   

SZ 
178  
137 

(I) 
Alc 

superior FC 
145 

(I) 
SZ 

Fibroblasts 
61 

8.00 
 

SLC35B3 
 solute carrier 

family 35 
(adenosine 3'-

phospho 5'-
phosphosulfate 

transporter), 
member B3 

231003_at (D) 
DE/4 6.00 3.34E-05 

Clock 
Distant 
Output 

 

 
(I) 
BP 

Brain 45 

(D) 
Delusions 
Blood 89 

6.00 

SNRNP27 
 small nuclear 

ribonucleoprotei
n 27kDa (U4 

212440_at (D) 
DE/4 6.00    

(I) 
MDD 

AMY, cingulate cortex 
86 

 4.00 

SNX27 
 sorting nexin 

family member 
27 

244349_at (I) 
AP/4 6.00    

(D) 
Alc 

HIP 97 
 

SZ 
STG 179 

 
(I) 

Delusions/ 
Hallucinations 

Blood 89 
 

(D) 
BP 

Blood 106 

6.00 

SSBP2 
 single-stranded 

DNA binding 
protein 2 

1557814_a_at (I) 
AP/4 6.00    

(D) 
BP 

Brain 45 
 

(I) 
MDD 

AMY and cingulate 
cortex 86 

(D) 
Mood State 
Blood   144 

6.00 

STRN 
 striatin, 

calmodulin 
binding protein 

1569813_at (I) 
AP/4 6.00    

(D) 
Alc 

HIP 97 

(I) 
MDD 

leukocytes 
180 

6.00 
 

TTC7A 
 

tetratricopeptide 
repeat domain 

7A 

224924_at (I) 
DE/4 6.00   MDD 

40   2.00 

UIMC1 
 ubiquitin 

interaction motif 
containing 1 

233596_at (I) 
DE/4 6.00      0.00 
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USP6NL 
 USP6 N-terminal 

like 
204761_at (D) 

DE/4 6.00 0.007614    

(D) 
Mood State 

Blood  144 
2.00 

WAC 
 WW domain 

containing 
adaptor with 

coiled-coil 

230154_at (D) 
DE/4 6.00 8.53E-05  ASD 

83 

(Unspecified) 
BP 

ACC (BA 24) 56 
 6.00 

WAPAL 
 wings apart-like 

homolog 
(Drosophila) 

212267_at (D) 
DE/4 6.00 0.002521    

(I) 
Mood stabilizers 

SK-N-AS cells 
181 

2.00 

ZBP1 
 Z-DNA binding 

protein 1 
208087_s_at (I) 

DE/4 6.00    
(I) 
Alc 

HIP  97 

 
(I) 
SZ 

LCLs  182 
 

Blood leukocytes  
(Stress, PTSD, Post-

Traumatic Stress 
Disorder) 0 

6.00 
 

ZFAND5 
 zinc finger, AN1-

type domain 5 
210275_s_at (D) 

DE/4 6.00 0.042362     0.00 

ZNF117 
 zinc finger 
protein 117 

207605_x_at (D) 
DE/4 6.00    

(I) 
MDD 
FC 183  4.00 

ZNF141 
 zinc finger 
protein 141 

206931_at (D) 
DE/4 6.00      0.00 

ZNF548 
 zinc finger 
protein 548 

1553718_at (D) 
DE/4 6.00 0.000461     0.00 

ZNF596 
 zinc finger 
protein 596 

240324_at (I) 
AP/4 6.00     

(D) 
Mood State 

Blood  144 
2.00 
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Table S4. Top candidate biomarker genes - drugs that modulate these markers in 
the opposite direction. FC- frontal cortex. HIP-Hippocampus. AMY- amygdala. VT-ventral tegmentum. Underlined- 
potential pharmacogenomics marker. 

Gene 
Symbol/ 

Gene Name 

Discov
ery 

(Chang
e) 

Metho
d/ 

Score 

Prioritizat
ion Total 

CFG Score 
For 

Suicide 

Validation 
ANOVA 
p-value 

Modulated by  
Omega-3 

Modulated by 
Lithium 

Modulated by 
Clozapine Other Drugs 

Out of Validated Biomarkers (Bonferroni) (49 genes, 50 probesets) 

BCL2 
 B-cell CLL 

(D) 
DE/2 9.00 3.95E-06  

(I) 
FC 
184 
 (I) 

cerebellar 
granule cells 

185 
 

(I) 
Human 
Blood 34 

 
(I) 

Astrocyte 
186 

 
(I) 

HIP 187 
 

(I) 
Dentate gyrus, 

HIP188 

(I) 
Hip 
189 

oblimersen,rasagiline,(-)-
gossypol,navitoclax,gemcitabine/pacl

itaxel,bortezomib/paclitaxel,ABT-
199,paclitaxel/trastuzumab,paclitaxel
/pertuzumab/trastuzumab,lapatinib/
paclitaxel,doxorubicin/paclitaxel,epir
ubicin/paclitaxel,paclitaxel/topoteca

n,paclitaxel 

GSK3B 
 glycogen 
synthase 

kinase 3 beta 

(D) 
DE/1 9.00 2.26E-05  

(I) 
FC 190  enzastaurin 

CAT 
 catalase 

(D) 
DE/2 8.00 5.04E-07  

BP 
(I) 

Plasma 59  fomepizole 

JUN 
 jun proto-
oncogene 

(I) 
DE/2 
DE/1   

8.00 1.14E-11 
1.72E-14  

(D) 
leukocytes68 

(D) 
FC 
191  

MOB3B 
 MOB kinase 
activator 3B 

(D) 
DE/1 7.00 4.69E-06 (I) 

PFC (females) 192    

NDRG1 
 N-myc 

downstream 
regulated 1 

(I) 
DE/1 7.00 3.07E-07 (D) 

Blood192    

SPON1 
 spondin 1, 

extracellular 
matrix protein 

(D) 
DE/1 7.00 1.02E-05   

(I) 
VT 
193 

 
 

FOXP1 
 forkhead box 

P1 

(I) 
DE/4 6.00 7.03E-07 

 
(D) 

Blood192    

HAVCR2 
 hepatitis A 

virus cellular 
receptor 2 

(I) 
DE/4 6.00 1.69E-12   

(D) 
PFC 
194  

GJA1 
 gap junction 
protein, alpha 

1, 43kDa 

(I) 
DE/1 5.00 1.96E-06 (D) 

HIP (females) 192  

(D) 
VT 
193  

CD84 
 CD84 

molecule 

(D) 
DE/2 4.00 1.74E-05   

(I) 
Blood 

193  

DCAF5 
 DDB1 and 

(D) 
DE/2 4.00 1.37E-05   

(I) 
VT  
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CUL4 
associated 

factor 5 

193 
 

GANC 
 glucosidase, 

alpha; neutral 
C 

(D) 
DE/2 4.00 1.40E-08 

  
 miglitol 

IL1R1 
 interleukin 1 

receptor, type I 

(I) 
AP/1 4.00 5.47E-08    anakinra 

INPP4A 
inositol 

polyphosphate
-4-

phosphatase, 
type I, 107kDa 

(D) 
DE/1 4 1.79E-05   

(I) 
VT 
193 

 

JRK 
 Jrk homolog 

(mouse) 

(D) 
AP/2 4.00 4.25E-06 (I) 

Brain195    

PDXDC1 
 pyridoxal-
dependent 

decarboxylase 
domain 

containing 1 

(I) 
DE/2 4.00 1.03E-05   

(D) 
VT193  

SMARCA2 
 SWI/SNF 

Related, Matrix 
Associated, 

Actin 
Dependent 

Regulator of 
Chromatin, 

Subfamily A, 
Member 2 

(D) 
DE/1 4.00 

2.46E-05 

 

(I) 
HIP (males) 192    

Out of Top Discovery and Prioritization Biomarkers(Non Bonferroni Validated, 65 genes) 
CLTA 

 clathrin, light 
chain A 

(I) 
DE/4 10.00    

(D) 
FC191  

PPM1B 
 protein 

phosphatase, 
Mg2+ 

(D) 
DE/4 8.00 0.002299   

(I) 
VT193 

  

AFF3 
 AF4/FMR2 

family, 
member 3 

(I) 
AP/4; (I) 

DE/1 
7.00  

(D) 
Blood 192    

WAC 

WW domain 
containing 

adaptor with 
coiled-coil 

(D) 
DE/4 

7.00 8.53E-05   (I) 
VT193 

 

AKT3 
 v-akt murine 

thymoma viral 
oncogene 
homolog 3 

(I) 
AP/4 6.00     enzastaurin 

ARID4B 
 AT rich 

interactive 
domain 4B 
(RBP1-like) 

(D) 
DE/4 6.00  

(I) 
HIP (males) 192    

ATXN1 
 ataxin 1 

(I) 
DE/4 6.00  

(D) 
Blood192    

BRE 
 Brain and 

reproductive 
organ-

expressed 
(TNFRSF1A 

(I) 
AP/4 6.00    

(D) 
VT193  
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modulator) 

CSNK1A1 
 casein kinase 

1, alpha 1 

(D) 
DE/4  

 
6.00  

(I) 
Blood192    

ENTPD1 ecton
ucleoside 

triphosphate 
diphosphohydr

olase 1 

(I) 
AP/4 6.00  

(D) 
Blood192  

(D) 
PFC194  

EPHB4 
 EPH receptor 

B4 

(I) 
DE/4 6.00     tesevatinib 

ETNK1 
ethanolamine 

kinase 1 

(D) 
AP/4 6.00  

(I) 
PFC (males)192 

 
 

   

ITIH5 
 inter-alpha-

trypsin 
inhibitor heavy 

chain family, 
member 5 

(I) 
AP/4 6.00  

 
(D) 

Blood192  
(D) 

PFC194  

LARP4 
 La 

ribonucleoprot
ein domain 

family, 
member 4 

(D) 
DE/4 

 
6.00 0.014911   

(I) 
VT193 

  

MBNL1 
 muscleblind-
like splicing 
regulator 1 

(D) 
DE/4 6.00 0.009769 

(I) 
HIP (males) 192 

 
 

 
(I) 

Blood193  

MR1 
 major 

histocompatibi
lity complex, 

class I-related 

(I) 
DE/4 6.00     antiLymphocyte serum 

PRDX3 
 peroxiredoxin 

3 

(D) 
DE/4 6.00 0.000225 (I) 

Blood192    

RAB22A 
 RAB22A, 

member RAS 
oncogene 

family 

(D) 
DE/4 6.00    

(I) 
Blood193  

SNX27 
 sorting nexin 

family member 
27 

(I) 
AP/4 6.00    

(D) 
AMY193  

SSBP2 
 single-

stranded DNA 
binding protein 

2 

(I) 
AP/4 6.00  

(D) 
Blood192  

(D) 
VT193  

WAPAL 
 wings apart-
like homolog 
(Drosophila) 

(D) 
DE/4 6.00 0.002521  

(I) 
SK-N-AS cells 

(ATCC derived 
from a human 
neuroblastoma 

cell 181 

(I) 
VT193 
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Table S5  Biological Pathways and Diseases. Suicidal ideation markers non-validated for behavior in completers (n=886) vs. 

suicidal ideation markers that were stepwise validated for behavior in completers (n=595). 

A. Ingenuity Pathways KEGG Pathways GeneGO Pathways 

 # Top Canonical Pathways 
P-

Val
ue 

Ratio Pathway Name Ra
tio 

Enric
hmen

t 
p-

value 

Process Networks Ratio p-
value 

Non- 
Validated 

Stepwise in   
Completers 

(n=882  
genes) 

 
Biomarkers 

for 
IDEATION 

only 

1 
PI3K Signaling in B Lymphocytes 

6.05
E-13 

20.3 % 
27/133 

Amoebiasis 
17/
36
8 

2.95E-
05 

Immune response_BCR 
pathway 

30/137 
5.123E-

09 

2 
B Cell Receptor Signaling 

3.08
E-11 

16.2 % 
29/179 

Glioma 
15/
30
0 

3.69E-
05 

Cytoskeleton_Regulati
on of cytoskeleton 

rearrangement 
33/183 

1.357E-
07 

3 
Role of NFAT in Cardiac 

Hypertrophy 
3.91
E-10 

15.1 % 
28/186 

Pancreatic cancer 
15/
36
6 

0.000
3 

Signal 
transduction_WNT 

signaling 
31/177 

6.413E-
07 

4 

Role of Macrophages, 
Fibroblasts and Endothelial 

Cells in Rheumatoid Arthritis 

1.05
E-09 

11.9 % 
36/302 

Focal adhesion 
24/
77
1 

0.000
318 

Signal 
transduction_Neurope

ptide signaling 
pathways 

28/155 
1.189E-

06 

5 
Amyotrophic Lateral Sclerosis 

Signaling 
2.78
E-09 

18.7 % 
20/107 

Phosphatidylinosit
ol signaling system 

12/
25
1 

0.000
324 

Cell cycle_G1-S Growth 
factor regulation 

32/195 
1.875E-

06 

 # Top Canonical Pathways 
P-

Val
ue 

Ratio Pathway Name Ra
tio 

Enric
hmen

t 
p-

value 

Process Networks Ratio p-
value 

 
Validation 

Stepwise in  
Completers 

(n=589 
genes) 

 
 

Biomarkers 
for 

IDEATION 
and 

BEHAVIOR 

1 
Glucocorticoid Receptor 

Signaling 
2.86
E-06 

7.8 % 
22/281 

Morphine 
addiction 

9/2
49 

0.000
6493 

Reproduction_Gonado
tropin regulation 

24/199 
9.843E-

07 

2 
IGF-1 Signaling 

7.18
E-06 

12.1 % 
12/99 

Colorectal cancer 
9/2
87 

0.001
6932 

Reproduction_GnRH 
signaling pathway 

20/166 
8.256E-

06 

3 
Renin-Angiotensin Signaling 

8.72
E-06 

11.0 % 
13/118 

Cocaine addiction 
6/1
55 

0.003
7291 

Reproduction_Progest
erone signaling 

23/214 
1.194E-

05 

4 
Protein Kinase A Signaling 

1.02
E-05 

6.5 % 
26/398 

Insulin signaling 
pathway 

12/
53
5 

0.004
7284 

Signal 
transduction_NOTCH 

signaling 
24/236 

1.962E-
05 

5 
Melanocyte Development and 

Pigmentation Signaling 
1.02
E-05 

12.8 % 
11/86 

Inositol phosphate 
metabolism 

6/1
93 

0.010
1986 

Signal 
transduction_Androge

n receptor signaling 
cross-talk 

12/72 
2.241E-

05 

http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145139
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145139
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145201
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145201
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145201
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145111
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145111
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145111
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145097
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145097
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145097
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145097
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145191
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145191
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145171
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145171
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145122
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145122
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145098
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145098
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145095
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145095
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145095
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145175
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145175
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145175
http://portal.genego.com/cgi/network/net_net.cgi?term=10&id=145175
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B. Ingenuity GeneGO 

  Diseases and Disorders P-Value # Molecules 
Diseases pValue Ratio 

Non- 
Validated 

Stepwise in   
Completers 

(n=886  
genes) 

 
 

Biomarkers 
for 

IDEATION 
only 

 
 
 

1 
Cancer 1.33E-04E - 2.55E-23 440 Mental Disorders 1.44E-25 166/1610 

2 
Organismal Injury and Abnormalities 1.33E-04E - 2.55E-23 440 Psychiatry and Psychology 3.23E-24 182/1904 

3 
Gastrointestinal Disease 9.09E-05 - 2.12E-18 333 Central Nervous System Diseases 1.43E-22 247/3060 

4 
Reproductive System Disease 2.80E-05 - 7.72E-18 244 Neurodegenerative Diseases 1.98E-22 189/2087 

5 
Infectious Diseases 3.72E-05 - 6.69E-15 109 Depressive Disorder, Major 1.31E-21 80/543 

  Diseases and Disorders P-Value # Molecules 
Diseases pValue Ratio 

 
Validation 

Stepwise in  
Completers 

(n=592 
genes) 

 
 

Biomarkers 
for  

IDEATION  
and 

BEHAVIOR 

1 
Cancer 6.51E-04 - 6.47E-17 489 Breast Neoplasms 2.361E-15 359/8894 

2 
Organismal Injury and Abnormalities 6.92E-04 - 6.47E-17 494 Breast Diseases 2.407E-15 359/8895 

3 
Gastrointestinal Disease 6.27E-04 - 6.91E-10 354 Psychiatry and Psychology 3.842E-14 115/1904 

4 
Reproductive System Disease 2.60E-04 - 1.51E-08 237 Pathological Conditions, Signs and Symptoms 1.247E-13 208/4433 

5 
Infectious Diseases 

6.92E-04 - 9.45E-8 104 Mental Disorders 1.833E-13 101/1610 

 

 

 

 

 

 

 

 

 

 

 

 

http://portal.genego.com/cgi/entity_page.cgi?term=61&id=-1461364818
http://portal.genego.com/cgi/entity_page.cgi?term=61&id=-1411754889
http://portal.genego.com/cgi/entity_page.cgi?term=61&id=-1357758656
http://portal.genego.com/cgi/entity_page.cgi?term=61&id=-901921432
http://portal.genego.com/cgi/entity_page.cgi?term=61&id=-1610245803
http://portal.genego.com/cgi/entity_page.cgi?term=61&id=-436099203
http://portal.genego.com/cgi/entity_page.cgi?term=61&id=-1349138
http://portal.genego.com/cgi/entity_page.cgi?term=61&id=-1411754889
http://portal.genego.com/cgi/entity_page.cgi?term=61&id=-1205942370
http://portal.genego.com/cgi/entity_page.cgi?term=61&id=-1461364818
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Table S6  Drugs that have similar and opposite  gene expression profile to our suicide biomarkers. 
Connectivity Map  (cmap) (Broad/MIT)196 results. Cmap comprises a collection of genome-wide transcriptional expression data from cultured 
human cells treated with bioactive small molecules and simple pattern-matching algorithms that together enable the discovery of functional 
connections between drugs, genes and diseases through the transitory feature of common gene-expression changes 196, 197. Score of 1 means 
maximum similarity, score of -1 means maximum opposite effect.  Red (most)/pink (other commonly used medications) that mimic effects of 
suicidality, i.e. may induce suicidality. Green (most)/light green other commonly used medications) that do the opposite to suicide, i.e. may 
be tested for or used to generate leads to treat/prevent suicidality. A.  Validated Bonferroni biomarkers.    B. Top  biomarkers from validation, 
as well as discovery and prioritization (Table S2). C. Validated nominally significant biomarkers.  

A. Validated Bonferroni Significant 
Biomarkers (49 Genes) 

      rank batch cmap name dose cell score    
1 683 lycorine 12 µM PC3 1    
3 645 lycorine 12 µM HL60 0.947    
6 726 digoxigenin 10 µM MCF7 0.924    
7 715 digoxin 5 µM PC3 0.923    

10 767 fluphenazine 10 µM MCF7 0.914    
12 506 thioridazine 10 µM MCF7 0.9    
14 504 felodipine 10 µM MCF7 0.889    
17 636 tamoxifen 7 µM MCF7 0.86    
22 502 felodipine 10 µM MCF7 0.854    

      
   

6081 622 mifepristone 9 µM HL60 -0.797    
6097 665 lansoprazole 11 µM HL60 -0.888    
6098 658 nafcillin 9 µM HL60 -0.895    
6100 665 betulin 9 µM HL60 -1    

      
   

B. Top Biomarkers (114 Genes) 
   

   
rank batch cmap name dose cell score    

1 631 7-aminocephalosporanic acid 15 µM HL60 1    
7 647 methotrexate 9 µM MCF7 0.902    
9 661 ribavirin 16 µM HL60 0.894    

10 664 fluticasone 8 µM HL60 0.888    
15 1074 pioglitazone 10 µM MCF7 0.859    
20 659 ganciclovir 16 µM HL60 0.834    
21 645 flunisolide 9 µM HL60 0.834    
35 695 simvastatin 10 µM MCF7 0.805    

      
   

6049 650 troglitazone 10 µM HL60 -0.8    
6059 635 rifampicin 5 µM HL60 -0.812    
6061 732 ondansetron 12 µM PC3 -0.813    
6062 636 tetracycline 8 µM MCF7 -0.817    
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6063 665 lansoprazole 11 µM HL60 -0.821    
6064 707 dicloxacillin 8 µM MCF7 -0.824    
6067 630 buspirone 9 µM HL60 -0.83    
6072 650 estradiol 100 nM HL60 -0.839    
6080 650 acetylsalicylic acid 100 µM HL60 -0.868    
6083 750 LY-294002 10 µM HL60 -0.881    
6092 694 minoxidil 19 µM MCF7 -0.92    
6097 650 LY-294002 10 µM HL60 -0.96    
6100 694 zalcitabine 19 µM MCF7 -1    

      
   

 
C. Validated Nominally Significant 

Biomarkers (396 genes) 
   

   
rank batch cmap name dose cell score    

1 665 pivampicillin 9 µM HL60 1    
6 648 metoprolol 6 µM HL60 0.902    

18 630 cefalexin 11 µM HL60 0.852    
20 749 dexpropranolol 14 µM HL60 0.843    
23 750 valproic acid 200 µM HL60 0.831    

      
   

6079 634 fluoxetine 12 µM HL60 -0.772    
6082 602 haloperidol 10 µM HL60 -0.791    
6085 629 diphenhydramine 14 µM HL60 -0.799    
6091 630 prochlorperazine 7 µM HL60 -0.832    
6092 629 metformin 24 µM HL60 -0.837    
6095 665 lansoprazole 11 µM HL60 -0.873    
6098 631 corticosterone 12 µM HL60 -0.919    
6100 649 atractyloside 5 µM HL60 -1    
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